A product integral solution of a Stieltjes-Volterra integral equation.
HTML articles powered by AMS MathViewer
- by James A. Reneke
- Proc. Amer. Math. Soc. 24 (1970), 621-626
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252999-5
- PDF | Request permission
Abstract:
This paper demonstrates that the theory of Stieltjes-Volterra integral equations may be subsumed in Mac Nerney’s general integral equation theory by making suitable choices of linear spaces and sets of operators.References
- D. B. Hinton, A Stieltjes-Volterra integral equation theory, Canadian J. Math. 18 (1966), 314–331. MR 188733, DOI 10.4153/CJM-1966-035-3
- Ralph E. Lane, The integral of a function with respect to a function, Proc. Amer. Math. Soc. 5 (1954), 59–66. MR 59346, DOI 10.1090/S0002-9939-1954-0059346-3
- J. S. MacNerney, Integral equations and semigroups, Illinois J. Math. 7 (1963), 148–173. MR 144179
- J. S. MacNerney, A nonlinear integral operation, Illinois J. Math. 8 (1964), 621–638. MR 167815
- J. W. Neuberger, Continuous products and nonlinear integral equations, Pacific J. Math. 8 (1958), 529–549. MR 102723, DOI 10.2140/pjm.1958.8.529
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 621-626
- MSC: Primary 45.30; Secondary 34.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252999-5
- MathSciNet review: 0252999