Jordan’s theorem for solvable groups
HTML articles powered by AMS MathViewer
- by Larry Dornhoff
- Proc. Amer. Math. Soc. 24 (1970), 533-537
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1
- PDF | Request permission
Abstract:
We show that every finite solvable group of $n \times n$ matrices over the complex numbers has a normal abelian subgroup of index $\leqq {2^{4n/3 - 1}}{3^{10n/9 - 1/3}}$. For infinitely many $n$, this bound is best possible.References
- H. F. Blichfeldt, Finite collineation groups, University of Chicago Press, Chicago, 1917.
- Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 206088, DOI 10.1007/BF01399532
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- John D. Dixon, Normal $p$-subgroups of solvable linear groups, J. Austral. Math. Soc. 7 (1967), 545–551. MR 0230815, DOI 10.1017/S1446788700004481
- John D. Dixon, The Fitting subgroup of a linear solvable group, J. Austral. Math. Soc. 7 (1967), 417–424. MR 0230814, DOI 10.1017/S1446788700004353
- Walter Feit, Groups which have a faithful representation of degree less than $p-1$, Trans. Amer. Math. Soc. 112 (1964), 287–303. MR 161906, DOI 10.1090/S0002-9947-1964-0161906-7
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3 C. Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878), 89-215.
- J. F. Rigby, Primitive linear groups containing a normal nilpotent subgroup larger than the centre of the group, J. London Math. Soc. 35 (1960), 389–400. MR 124416, DOI 10.1112/jlms/s1-35.4.389
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 533-537
- MSC: Primary 20.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1
- MathSciNet review: 0255680