Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Jordan’s theorem for solvable groups
HTML articles powered by AMS MathViewer

by Larry Dornhoff
Proc. Amer. Math. Soc. 24 (1970), 533-537
DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1

Abstract:

We show that every finite solvable group of $n \times n$ matrices over the complex numbers has a normal abelian subgroup of index $\leqq {2^{4n/3 - 1}}{3^{10n/9 - 1/3}}$. For infinitely many $n$, this bound is best possible.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20.40
  • Retrieve articles in all journals with MSC: 20.40
Bibliographic Information
  • © Copyright 1970 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 24 (1970), 533-537
  • MSC: Primary 20.40
  • DOI: https://doi.org/10.1090/S0002-9939-1970-0255680-1
  • MathSciNet review: 0255680