1. Introduction. Let k denote a fixed positive integer. A completely multiplicative arithmetical function χ is called a character modulo k if χ is periodic with period k and has the property that $\chi(n) = 0$ if and only if $(n, k) > 1$. It is well known that there are exactly $\phi(k)$ distinct characters modulo k and that they form a multiplicative group, the identity element being the principal character χ_1, where $\chi_1(n) = 1$ if $(n, k) = 1$. Here $\phi(k)$ is Euler’s totient.

A positive divisor d of k is called an induced modulus for χ if we have

$$\chi(n) = 1 \quad \text{whenever} \quad (n, k) = 1 \quad \text{and} \quad n \equiv 1 \pmod{d}. \quad (1)$$

This implies that χ is also a character modulo d. In particular, k itself is always an induced modulus for χ. The smallest induced modulus is called the conductor of χ. A character χ modulo k is called primitive if its conductor is k, that is, if it has no induced modulus less than k.

For any character χ modulo k and any integer r we consider the Gauss sum $G(r, \chi)$ defined by the equation

$$G(r, \chi) = \sum_{h \mod k} \chi(h)e^{2\pi i rh/k}, \quad (2)$$

where the sum is extended over any complete residue system modulo k. We call the Gauss sum separable if we have

$$G(r, \chi) = \tilde{\chi}(r)G(1, \chi). \quad (3)$$

It is well known that the Gauss sum $G(r, \chi)$ is separable if χ is a primitive character (see Lemma 3 below). This paper proves the converse. That is, if $G(r, \chi)$ is separable for every r, then χ is primitive. Therefore, we have the following alternate description of primitive characters.

Theorem 1. A character χ modulo k is primitive if, and only if, the Gauss sum $G(r, \chi)$ is separable for every r.

2. Lemmas. The proof of Theorem 1 is based on seven lemmas. Lemma 6 describes a property of the Euler ϕ-function which is crucial to the proof of Theorem 1 and also has applications elsewhere [1], [3, p. 24], [5, p. 66]. The other lemmas deal with characters and Gauss sums.

Received by the editors June 11, 1969.
Lemma 1. For any character \(\chi \) modulo \(k \), the Gauss sum \(G(r, \chi) \) is separable whenever \((r, k) = 1 \).

Proof. Since \((r, k) = 1 \) the numbers \(rh \) run through a complete residue system modulo \(k \) with \(h \). Also, \(|\chi(r)| = 1 \) so we have \(\chi(h) = \tilde{\chi}(r)\chi(r)\chi(h) = \tilde{\chi}(r)\chi(rh) \). Hence we can write

\[
G(r, \chi) = \sum_{h \mod k} \chi(h)e^{2\pi i rh/k} = \tilde{\chi}(r) \sum_{h \mod k} \chi(rh)e^{2\pi i rh/k}
\]

\[
= \tilde{\chi}(r) \sum_{m \mod k} \chi(m)e^{2\pi im/k} = \tilde{\chi}(r)G(1, \chi).
\]

This proves that \(G(r, \chi) \) is separable.

Lemma 2. Assume \((r, k) > 1 \). Then \(G(r, \chi) \) is separable if and only if \(G(r, \chi) = 0 \).

Proof. If \((r, k) > 1 \) we have \(\chi(r) \neq 0 \) so equation (3) holds if and only if \(G(r, \chi) = 0 \).

Lemma 3. If \(\chi \) is a primitive character modulo \(k \), then the Gauss sum \(G(r, \chi) \) is separable for every \(r \).

Proof. A proof of Lemma 3 is given in [2, Theorem 4.12, p. 312] and in [4, Lemma 1.1, p. 212].

Lemma 3, together with its converse (Lemma 7 below) give us Theorem 1. The next three lemmas are used to prove Lemma 7.

Lemma 4. If \(\chi \) is a primitive character mod \(k \), then \(|G(1, \chi)|^2 = k \).

Proof. A proof of Lemma 4 is given in [2, Theorem 4.13, p. 313] and in [4, Lemma 1.1, p. 212].

Lemma 5. Let \(\chi \) be any character modulo \(k \) and let \(d \) be the conductor of \(\chi \). Then there exists a primitive character \(\psi \) modulo \(d \) such that

\[
\chi(n) = \psi(n)\chi_1(n),
\]

where \(\chi_1 \) is the principal character modulo \(k \).

Proof. We define \(\psi(n) \) by the equation \(\psi(n) = \chi(n)/\chi_1(n) \) if \((n, d) = 1 \) and we let \(\psi(n) = 0 \) if \((n, d) > 1 \). Then equation (4) holds for all \(n \). It is easy to verify that \(\psi \) is a character modulo \(d \). To prove that \(\psi \) is a primitive character modulo \(d \), let \(q \) be any induced modulus for \(\psi \). Then we have

\[
\psi(n) = 1 \quad \text{if} \quad (n, d) = 1 \quad \text{and} \quad n \equiv 1 \pmod{q}.
\]

Equation (4) implies that \(\chi(n) = 1 \) if \((n, k) = 1 \) and \(n \equiv 1 \pmod{q} \), so \(q \) is also an induced modulus for \(\chi \). Hence \(q \geq d \) since \(d \) is the conductor.
of \(\chi \). Therefore the conductor of \(\psi \) is equal to \(d \) so \(\psi \) is primitive modulo \(d \). This proves Lemma 5.

The next lemma concerns decomposition of reduced residue systems.

Lemma 6. Let \(S_k \) denote a reduced residue system modulo \(k \), and let \(d \) be a divisor of \(k \). Then \(S_k \) is the union of \(\phi(k) / \phi(d) \) disjoint sets, each of which is a reduced residue system modulo \(d \).

Proof. Consider \(S_k \) as a multiplicative group of reduced residue classes modulo \(k \), and let \(S_d \) be the group of reduced residue classes modulo \(d \). Let the classes of \(S_k \) be represented by integers \(n \) and those of \(S_d \) by integers \(r \), and note that each \(n \) is congruent (mod \(d \)) to a number \(r \) since \(d | k \). Define a mapping \(f: S_k \to S_d \) as follows:

If \(n \in S_k \), then \(f(n) = r \), where \(n \equiv r \) (mod \(d \)).

This mapping is a homomorphism of \(S_k \) into \(S_d \). The homomorphism is onto because if \((r, d) = 1 \) there always exists an integer \(n \) such that

\[n \equiv r \pmod{d} \quad \text{and} \quad (n, k) = 1. \]

In fact, we can take for \(n \) the solution to the system of congruences

\[x \equiv r \pmod{d}, \quad x \equiv 1 \pmod{k'}, \]

where \(k' \) is the product of those prime factors of \(k \) which do not divide \(d \). Since \((k', d) = 1 \) this system has a solution (by the Chinese remainder theorem). To prove that \((n, k') = 1 \) we note that \((n, k') = 1 \) because \(n \equiv 1 \) (mod \(k' \)) and that \((n, d) = 1 \) because \(n \equiv r \) (mod \(d \)). Hence \((n, k'd) = 1 \). But \(k \) and \(k'd \) have the same set of prime factors, so \((n, k) = 1 \).

Now let \(K \) be the kernel of \(f \), that is, \(K = \{ x \in S_k | x \equiv 1 \pmod{d} \} \). Then the factor group \(S_k/K \) is isomorphic to the group \(S_d \), so we have a corresponding coset decomposition

\[S_k = \bigcup_{x \in T} xK, \]

where \(T \) is a set of coset representatives. If we take one representative from each coset we get a reduced residue system modulo \(d \). There are \(\phi(k) \) elements in \(S_k \) and \(\phi(d) \) elements in each reduced residue system modulo \(d \), so there are \(\phi(k) / \phi(d) \) such residue systems altogether. This completes the proof of Lemma 6.

Note. The referee has pointed out that Lemma 6 was proved in 1923 by T. Nagell [3], and that a different proof was later given by R. Vaidyanathaswamy [5]. Our group-theoretic proof is different from each of these.
Now we use Lemmas 4, 5, and 6 to prove the converse of Lemma 3.

Lemma 7. If a character \(\chi \) modulo \(k \) has separable Gauss sums \(G(r, \chi) \) for every \(r \), then \(\chi \) is primitive modulo \(k \).

Proof. Because of Lemmas 1 and 2, it suffices to prove that if \(\chi \) is not primitive then for some \(r \) satisfying \((r, k) > 1 \) we have \(G(r, \chi) \neq 0 \).

Suppose, then, that \(\chi \) is not primitive modulo \(k \). This implies \(k > 1 \).

Then \(\chi \) has a conductor \(d < k \). If \(d = 1 \) then \(\chi = \chi_1 \) and we have

\[
G(r, \chi_1) = \sum_{h \mod k} \chi_1(h)e^{2\pi irh/k} = \sum_{h \mod k; (h, k) = 1} e^{2\pi irh/k}.
\]

When \(r = k \) we have \(G(k, \chi_1) = \phi(k) \neq 0 \). This proves the lemma for the case in which the conductor \(d = 1 \).

Now suppose \(d > 1 \) and let \(r = k/d \). We have \((r, k) > 1 \) and we shall prove that \(G(r, \chi) \neq 0 \) for this \(r \). By Lemma 5 there exists a character \(\psi \) modulo \(d \) such that \(\chi(n) = \psi(n)\chi_1(n) \) for all \(n \). Hence we can write

\[
G(r, \chi) = \sum_{h \mod k} \psi(h)\chi_1(h)e^{2\pi irh/k} = \sum_{h \mod k; (h, k) = 1} \psi(h)e^{2\pi irh/k} = \frac{\phi(k)}{\phi(d)} \sum_{h \mod d; (h, d) = 1} \psi(h)e^{2\pi irh/d},
\]

where in the last step we used Lemma 6. Therefore we have

\[
G(r, \chi) = \frac{\phi(k)}{\phi(d)} G(1, \psi).
\]

But \(|G(1, \psi)|^2 = d \) by Lemma 4 (since \(\psi \) is primitive modulo \(d \)) and hence \(G(r, \chi) \neq 0 \). This completes the proof of Lemma 7. As already mentioned, Lemmas 3 and 7 together prove Theorem 1.

References

California Institute of Technology