Note on the homology of a fiber product of groups
HTML articles powered by AMS MathViewer
- by G. S. Rinehart
- Proc. Amer. Math. Soc. 24 (1970), 548-552
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257184-9
- PDF | Request permission
Abstract:
Spectral sequences are derived for the homology and cohomology of a fiber product of groups with coefficients in a tensor product module. These generalize the Hochschild-Serre spectral sequences, and, in the case of a full product of groups, give Künneth formulas. The latter are used to make easy explicit computations of the homology and cohomology of an arbitrary finitely generatedReferences
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- Roger C. Lyndon, The cohomology theory of group extensions, Duke Math. J. 15 (1948), 271–292. MR 25468
- Bodo Pareigis, Zur Kohomologie endlich erzeugter abelscher Gruppen, Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 1967 (1968), no. Abt. II, 177–193 (1968) (German). MR 238959
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 548-552
- MSC: Primary 18.20
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257184-9
- MathSciNet review: 0257184