Direct product decomposition of commutative semi-simple rings
HTML articles powered by AMS MathViewer
- by Alexander Abian
- Proc. Amer. Math. Soc. 24 (1970), 502-507
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258815-X
- PDF | Request permission
Abstract:
In this paper it is shown that a commutative semisimple ring is isomorphic to a direct product of fields if and only if it is hyperatomic and orthogonally complete.References
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264, DOI 10.1090/coll/037
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 502-507
- MSC: Primary 13.50
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258815-X
- MathSciNet review: 0258815