Homeomorphic measures in metric spaces
HTML articles powered by AMS MathViewer
- by John C. Oxtoby
- Proc. Amer. Math. Soc. 24 (1970), 419-423
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260961-1
- PDF | Request permission
Abstract:
For any nonatomic, normalized Borel measure $\mu$ in a complete separable metric space $X$ there exists a homeomorphism $h:\mathfrak {N} \to X$ such that $\mu = \lambda {h^{ - 1}}$ on the domain of $\mu$, where $\mathfrak {N}$ is the set of irrational numbers in $(0,1)$ and $\lambda$ denotes Lebesgue-Borel measure in $\mathfrak {N}$. A Borel measure in $\mathfrak {N}$ is topologically equivalent to $\lambda$ if and only if it is nonatomic, normalized, and positive for relatively open subsets.References
- Paul Alexandroff, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), no. 1, 89–106 (German). MR 1512393, DOI 10.1007/BF01451582 N. Bourbaki, Intégration. Livre VI. Chapitre 5: Intégration des mesures, Hermann, Paris, 1956. MR 18, 881.
- Bernard R. Gelbaum, Cantor sets in metric measure spaces, Proc. Amer. Math. Soc. 24 (1970), 341–343. MR 254201, DOI 10.1090/S0002-9939-1970-0254201-7
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Paul R. Halmos, Lectures on Boolean algebras, Van Nostrand Mathematical Studies, No. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0167440
- Casimir Kuratowski, Topologie. Vol. I, Monografie Matematyczne, Tom 20, Państwowe Wydawnictwo Naukowe, Warsaw, 1958 (French). 4ème éd. MR 0090795
- E. Marczewski and R. Sikorski, Measures in non-separable metric spaces, Colloq. Math. 1 (1948), 133–139. MR 25548, DOI 10.4064/cm-1-2-133-139
- J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874–920. MR 5803, DOI 10.2307/1968772
- J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. (2) 33 (1932), no. 3, 574–586 (German). MR 1503077, DOI 10.2307/1968536
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 419-423
- MSC: Primary 28.13
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260961-1
- MathSciNet review: 0260961