A Riesz representation theorem
HTML articles powered by AMS MathViewer
- by Robert Kent Goodrich
- Proc. Amer. Math. Soc. 24 (1970), 629-636
- DOI: https://doi.org/10.1090/S0002-9939-1970-0415386-2
- PDF | Request permission
References
- Jürgen Batt and Heinz König, Darstellung linearer Transformationen durch vektorwertige Riemann-Stieltjes-Integrale, Arch. Math. 10 (1959), 273–287 (German). MR 108708, DOI 10.1007/BF01240797
- R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canadian J. Math. 7 (1955), 289–305. MR 70050, DOI 10.4153/CJM-1955-032-1
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Ciprian Foiaş and Ivan Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev. Math. Pures Appl. 5 (1960), 729–752. MR 131770
- Robert K. Goodrich, A Riesz representation theorem in the setting of locally convex spaces, Trans. Amer. Math. Soc. 131 (1968), 246–258. MR 222681, DOI 10.1090/S0002-9947-1968-0222681-4
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Ivan Singer, Sur les applications linéaires intégrales des espaces de fonctions continues. I, Rev. Math. Pures Appl. 4 (1959), 391–401 (French). MR 115080
- I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues à valeurs vectorielles, Acta Math. Acad. Sci. Hungar. 11 (1960), 3–13 (unbound insert) (French, with Russian summary). MR 115081, DOI 10.1007/BF02020620 F. Riesz, Sur les operations fonctionelles linéaires, C. R. Acad. Sci. Paris 149 (1909), 974-977.
- Khyson Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964), 270–291; errata: 157 (1964), 178. MR 0165358, DOI 10.1007/BF01354862
- Don H. Tucker, A representation theorem for a continuous linear transformation on a space of continuous functions, Proc. Amer. Math. Soc. 16 (1965), 946–953. MR 199722, DOI 10.1090/S0002-9939-1965-0199722-9 D. Uherka, A Riesz representation theorem, Ph.D. Thesis, University of Utah, Salt Lake City, 1964. S. Wayment and D. Tucker, Absolute continuity and the Radon theorem (to appear).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 629-636
- MSC: Primary 47B37; Secondary 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0415386-2
- MathSciNet review: 0415386