COMMUTATIVE QF-1 ARTINIAN RINGS ARE QF

S. E. DICKSON AND K. R. FULLER

Abstract. In a recent paper, D. R. Floyd proved several results on algebras, each of whose faithful representations is its own bicommutant (= R. M. Thrall's QF-1 algebras, a generalization of QF-algebras) among which was the theorem in the title for algebras. We obtain our extension of Floyd's result by use of interlacing modules, replacing his arguments involving the representations themselves.

In [10], Thrall observed that the class of finite-dimensional algebras over which every faithful representation has the double centralizer property (i.e., is its own bicommutant) properly contains the class of quasi-Frobenius (= QF) algebras. He called the members of the former class QF-1 algebras and posed the intriguing problem of characterizing these algebras in terms of ideal structure. Solutions for this problem have been given for generalized uniserial algebras [5] and for commutative algebras [4]. Every faithful module M over a QF ring R has the double centralizer property in the sense that the natural homomorphism $\lambda: R \to \text{Hom}_C(M, M)$ (where $C = \text{Hom}_R(M, M)$) is onto (see [2, §59]). Thus Thrall's definition and his problem extend naturally to QF-1 artinian rings.

In view of recent results on the dominant dimension of an artinian ring (see [1, Theorem 2] or [8, Lemma 9]), the characterization of QF-1 generalized uniserial algebras (and its proof) given in [5] remains valid for generalized uniserial rings. In this note we prove the theorem of the title, thus extending a theorem that Floyd proved for finite-dimensional algebras by means of matrix representations [4].

It is not difficult to show that a direct sum of rings is QF or QF-1 if and only if so is each of the direct summands. Thus for our purposes we may assume that R is a commutative local artinian ring. According to Nakayama's original definition [9, p. 8], such a ring is QF if and only if its R-socle (i.e., its largest semisimple R-submodule) $S(R) = S_1(R)$ is simple. We shall prove the theorem by constructing, in the event that $S(R)$ is not simple, a faithful module whose double centralizer has an R-socle larger than that of R. The methods used in this

Received by the editors June 26, 1969.

AMS Subject Classifications. Primary 1625, 1640, 1650; Secondary 1350, 1690.

Key Words and Phrases. QF-1 ring, QF-ring, Frobenius ring, quasi-Frobenius ring, artinian ring, faithful module, bicommutant, double centralizer property.

667
construction are suggested by the Lemma of [7] and Theorem 3.1 of [3].

Let \(R \) be a commutative local artinian ring and let \(M \) be a finitely generated indecomposable \(R \)-module with centralizer \(C = \text{Hom}_R(M, M) \) and double centralizer \(C' = \text{Hom}_C(M, M) \). Let \(K = R / \text{Rad} R \) and \(D = C / \text{Rad} C \). In this setting we have the following.

1. The ring \(C \) is completely primary, in the sense that \(D \) is a division ring and \(\text{Rad} C \) is nilpotent [6, Chapter 4].
2. Since \(R \) is commutative, \(C \) and \(C' \) are algebras over \(R \), via
 \[(r \gamma)(m) = r \gamma(m) = \gamma(rm) = (\gamma r)(m)\]
 for \(r \in R \), \(\gamma \in \text{Hom}(M, M) \), \(m \in M \).
3. \((\text{Rad} R) C \) is a nilpotent ideal in \(C \), so \(D \) is an algebra over the field \(K \).
4. The \(C \)-socle of \(M \), \(S(cM) \), is an \(R-C \)-module annihilated by \(\text{Rad} C \) and hence is a \(K-D \)-vector space.

With these observations we can now prove that the \(R \)-socle of \(C' \), \(S(rC') \), has length at least as large as the dimension of \(S(cM) \) over \(K \).

That is,

\[(5) \quad |S(rC') : K| \geq |S(cM) : K|.

Proof. Let \(T \) be a maximal \(C \)-submodule of \(M \). Then, because the functor \(\text{Hom}_C(\ , \) \) is left exact in both variables and \(C \) is an \(R \)-algebra, there is an \(R \)-monomorphism

\[0 \rightarrow \text{Hom}_C(M/T, S(cM)) \rightarrow C'.\]

But since \(\text{Rad} C \) (and hence \(\text{Rad} R \)) annihilates \(M/T \) and \(S(cM) \) this is really a \(K \)-monomorphism

\[0 \rightarrow \text{Hom}_D(M/T, S(cM)) \rightarrow S(rC').\]

Thus, since \(M/T \) is a one-dimensional \(D \)-space and \(S(cM) \) is a finite-dimensional \(D \)-space, we have

\[|S(rC') : K| \geq |\text{Hom}_D(M/T, S(cM)) : K| = |S(cM) : D : K| = |S(cM) : K|.

Now we are in a position to prove our main result.

Theorem. Every commutative artinian QF-1 ring is QF.

Proof. Suppose that \(R \) is as above and has distinct (but necessarily isomorphic) minimal ideals \(S \) and \(S' \). Let \(\phi : S \rightarrow S' \) be an isomorphism and form the interlacing module.
\[M = (R \times R)/L, \quad L = \{(s, -\phi(s)) \mid s \in S\}. \]

Then \(M \) contains a copy of \(R \) and so is faithful. Suppose \(\gamma \) is an \(R \)-endomorphism of \(M \). If \(\eta: R \times R \to M \) is the natural epimorphism then, using the projectivity of \(R \times R \), one obtains an \(R \)-map \(\tilde{\gamma} \) making the diagram

\[
\begin{array}{ccc}
R \times R & \xrightarrow{\gamma} & R \times R \\
\eta \downarrow & & \downarrow \eta \\
M & \xrightarrow{\gamma} & M
\end{array}
\]

commute and consequently taking \(L \) into \(L \). The operation of \(\tilde{\gamma} \) on \(R \times R \) is just that of some matrix

\[
\begin{pmatrix}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{pmatrix}, \quad \gamma_{ij} \in R.
\]

The stability of \(L \) under \(\tilde{\gamma} \) yields for each \(s \in S \), an \(\bar{s} \in S \) such that \(s \) and \(\bar{s} \) satisfy the matrix equation

\[(s, -\phi(s)) \begin{pmatrix}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{pmatrix} = (\bar{s}, -\phi(\bar{s})).\]

From these equations and the independence of \(S \) and \(S' \) it follows easily that \(\gamma_{12} \) and \(\gamma_{21} \) both annihilate \(S \) and so are nilpotent, and that \(\gamma_{11} \) and \(\gamma_{22} \) are simultaneously either nilpotent or invertible. Thus the matrix of \(\tilde{\gamma} \) either has all nilpotent entries or is invertible. But \(\gamma \) is nilpotent or invertible if \(\tilde{\gamma} \) is, by the commutativity of the diagram, so \(M \) is indecomposable. Moreover, if \(\gamma \) is nilpotent then \(\tilde{\gamma} \), having a matrix with radical entries, must annihilate \(S(R) \times S(R) \). That is,

\[\gamma(\eta(S(R) \times S(R))) = \eta(\tilde{\gamma}(S(R) \times S(R))) = 0\]

whenever, in our earlier notation, \(\gamma \in \text{Rad} \ C \). This proves that

\[\eta(S(R) \times S(R)) \subseteq S(cM)\]

and the containment is as \(K \)-spaces. Now surely

\[|\eta(S(R) \times S(R)) : K | = 2|S(R) : K| - 1,\]

so by (5) the double centralizer \(C' \) of \(M \) must have an \(R \)-socle strictly larger than that of \(R \). This completes the proof.

If \(R \) is a semisimple ring then all \(R \)-modules (faithful or not) have the double centralizer property. Thus one wonders which rings satisfy this condition. Recalling that a ring is uniserial if and only if each of its factor rings is QF (see [5]), we obtain the
Corollary. Every module over a commutative artinian ring \(R \) has the double centralizer property if and only if \(R \) is a uniserial ring.

Added in proof. V. P. Camillo has independently obtained these results using different methods.

References

Iowa State University and University of Iowa