Zeros of analytic functions with infinitely differentiable boundary values
HTML articles powered by AMS MathViewer
- by James G. Caughran
- Proc. Amer. Math. Soc. 24 (1970), 700-704
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252649-8
- PDF | Request permission
Abstract:
A necessary and sufficient condition is proved that a set of points $\{ {r_n}{e^{i\theta n}}\}$ in the unit disk be the set of zeros of an analytic function with infinitely differentiable boundary values for every choice of $\{ {r_n}\} ,\;0 < {r_n} < 1\;{\text {and}}\;\sum {(1 - {r_n}) < \infty }$References
- Arne Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1–13 (French). MR 1370, DOI 10.1007/BF02546325
- Lennart Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345. MR 50011, DOI 10.1007/BF02392289
- Lennart Carleson, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190–196. MR 112958, DOI 10.1007/BF01162477
- James G. Caughran, Two results concerning the zeros of functions with finite Dirichlet integral, Canadian J. Math. 21 (1969), 312–316. MR 236396, DOI 10.4153/CJM-1969-033-5
- W. P. Novinger, Holomorphic functions with infinitely differentiable boundary values, Illinois J. Math. 15 (1971), 80–90. MR 269861
- B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canadian J. Math. 22 (1970), 1266–1283. MR 273024, DOI 10.4153/CJM-1970-143-x S. Warschawski, Über einen Satz von O. D. Kellogg, Gött. Nach. (1932), 73-86. J. H. Wells, On the zeros of functions with derivatives in ${H^1}$ and ${H^\infty }$, Canad. J. Math, (to appear).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 700-704
- MSC: Primary 30.67
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252649-8
- MathSciNet review: 0252649