Oscillation theorems for second order nonlinear differential equations.
HTML articles powered by AMS MathViewer
- by Lynn Erbe
- Proc. Amer. Math. Soc. 24 (1970), 811-814
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252756-X
- PDF | Request permission
Abstract:
The oscillatory and nonoscillatory behavior of the nonlinear second order differential equation $(1)\;x'' + p(t)f(x) = 0$ is related to that of ${(2)_\lambda }\;x'' + \lambda p(t)x = 0,\;\lambda > 0$. Under certain conditions on $p(t)$ and $f(x)$ it is shown that all solutions of $(1)$ are oscillatory if ${(2)_\lambda }$ is oscillatory for all $\lambda > 0$. In contrast to most of the literature on this subject, no sign or integrability conditions on $p(t)$ are explicitly assumed.References
- James S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1968), 207–234 (1969). MR 245915
- D. Willett, Classification of second order linear differential equations with respect to oscillation, Advances in Math. 3 (1969), 594–623. MR 280800, DOI 10.1016/0001-8708(69)90011-5
- D. Willett, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math. 21 (1969), 175–194. MR 249723, DOI 10.4064/ap-21-2-175-194
- W. R. Utz, Properties of solutions of $u^{\prime \prime }+g(t)u^{2n-1}=0$, Monatsh. Math. 66 (1962), 55–60. MR 138834, DOI 10.1007/BF01418878
- Paul Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), 439–441. MR 173050, DOI 10.1016/0022-247X(65)90138-1
- Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117. MR 28499, DOI 10.1090/S0033-569X-1949-28499-6
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 811-814
- MSC: Primary 34.42
- DOI: https://doi.org/10.1090/S0002-9939-1970-0252756-X
- MathSciNet review: 0252756