Computable fields and arithmetically definable ordered fields
HTML articles powered by AMS MathViewer
- by A. H. Lachlan and E. W. Madison
- Proc. Amer. Math. Soc. 24 (1970), 803-807
- DOI: https://doi.org/10.1090/S0002-9939-1970-0253897-3
- PDF | Request permission
References
- A. Fröhlich and J. C. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy. Soc. London Ser. A 248 (1956), 407–432. MR 74349, DOI 10.1098/rsta.1956.0003
- Eugene W. Madison, Computable algebraic structures and nonstandard arithmetic, Trans. Amer. Math. Soc. 130 (1968), 38–54. MR 219416, DOI 10.1090/S0002-9947-1968-0219416-8
- B. H. Mayoh, Unsolvable problems in the theory of computable numbers, Formal Systems and Recursive Functions (Proc. Eighth Logic Colloq., Oxford, 1963) North-Holland, Amsterdam, 1965, pp. 272–279. MR 0209153
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
- Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley-Los Angeles, Calif., 1951. 2nd ed. MR 0044472
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 803-807
- MSC: Primary 02.70
- DOI: https://doi.org/10.1090/S0002-9939-1970-0253897-3
- MathSciNet review: 0253897