Asymptotic values of normal light interior functions defined in the unit disk
HTML articles powered by AMS MathViewer
- by J. H. Mathews
- Proc. Amer. Math. Soc. 24 (1970), 691-695
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254255-8
- PDF | Request permission
Abstract:
Lehto and Virtanen have extended Lindelöf’s theorem for the class of normal meromorphic functions. It is shown that Lindelöf’s theorem cannot be extended for the class of bounded normal light interior functions. A generalization of Lindelöf’s theorem is given.References
- Peter Lappan, Some results on harmonic normal functions, Math. Z. 90 (1965), 155–159. MR 209499, DOI 10.1007/BF01112241
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A. I. 1957 (1957), no. 239, 17. MR 91342 J. Mathews, Normal light interior functions defined in the unit disk, Nagoya Math. J. (to appear).
- Akira Mori, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77. MR 83024, DOI 10.1090/S0002-9947-1957-0083024-5
- Jussi Väisälä, On normal quasiconformal functions, Ann. Acad. Sci. Fenn. Ser. A. I. 266 (1959), 33. MR 105505
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 691-695
- MSC: Primary 30.80
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254255-8
- MathSciNet review: 0254255