Quasi-projective covers and direct sums
HTML articles powered by AMS MathViewer
- by Anne Koehler
- Proc. Amer. Math. Soc. 24 (1970), 655-658
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255596-0
- PDF | Request permission
Abstract:
In this paper $R$ denotes an associative ring with an identity, and all modules are unital left $R$-modules. It is shown that the existence of a quasi-projective cover for each module implies that each module has a projective cover. By a similar technique the following statements are shown to be equivalent: 1. $R$ is semisimple and Artinian; 2. Every finitely generated module is quasi-projective; and 3. The direct sum of every pair of quasi-projective modules is quasi-projective. Direct sums of quasi-injective modules are also investigated.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Nicole Chaptal, Sur les modules quasi-injectifs, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A173–A175 (French). MR 207759 J. Beachy, Some homological classes of rings and modules, Ph.D. Thesis, Indiana University, Bloomington, Ind., 1967.
- Carl Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179–191. MR 193107
- Carl Faith and Yuzo Utumi, Quasi-injective modules and their endomorphism rings, Arch. Math. (Basel) 15 (1964), 166–174. MR 166226, DOI 10.1007/BF01589182 R. P. Kurshan, Rings whose cyclic modules have finitely generated socle, (to appear).
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Yôichi Miyashita, Quasi-projective modules, perfect modules, and a theorem for modular lattices, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 86–110. MR 0213390
- Alex Rosenberg and Daniel Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/59), 372–380. MR 105434, DOI 10.1007/BF01558598
- M. Satyanarayana, Semisimple rings, Amer. Math. Monthly 74 (1967), 1086. MR 225811, DOI 10.2307/2313615
- L. E. T. Wu and J. P. Jans, On quasi projectives, Illinois J. Math. 11 (1967), 439–448. MR 220765
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 655-658
- MSC: Primary 16.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255596-0
- MathSciNet review: 0255596