Polynomial approximation on $y=x^{\alpha }$
HTML articles powered by AMS MathViewer
- by E. Passow and L. Raymon
- Proc. Amer. Math. Soc. 24 (1970), 781-783
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257624-5
- PDF | Request permission
Abstract:
We show that on the curve $y = {x^\alpha },\alpha$ any irrational, $0 \leqq x \leqq 1$, the degree of approximation by $n$th degree polynomials in $x$ and $y$ in the ${L^2}$ norm has order of magnitude $1/{n^{3/2}}$.References
- D. J. Newman and L. Raymon, Quantitative polynomial approximation on certain planar sets, Trans. Amer. Math. Soc. 136 (1969), 247–259. MR 234176, DOI 10.1090/S0002-9947-1969-0234176-3
- D. J. Newman, A Müntz-Jackson theorem, Amer. J. Math. 87 (1965), 940–944. MR 186974, DOI 10.2307/2373254 D. J. Newman and E. Passow, An $n$-dimensional Müntz-Jackson theorem, (to appear).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 781-783
- MSC: Primary 41.41
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257624-5
- MathSciNet review: 0257624