A DIRECT PROOF THAT A LINEARLY ORDERED SPACE IS HEREDITARILY COLLECTIONWISE NORMAL1

LYNN A. STEEN

Although it appears well known that a linearly ordered space is completely normal (=hereditarily normal), most available proofs (in, for instance, [1] and [2]) are very indirect. In this paper we present a direct proof of a stronger theorem, namely that the interval topology is hereditarily collectionwise normal.2

If X is linearly ordered, we will call a set S ⊆ X convex if a, b ∈ S and a < t < b implies t ∈ S. The union of any collection of convex sets with nonempty intersection is convex, so any subset S of X can be uniquely expressed as a union of disjoint maximal convex sets called convex components. Clearly every interval in X is convex but not conversely, and we will, as usual, denote intervals by (a, b), [a, b], [a, b), or [a, b]. In what follows, X will denote a linearly ordered space, i.e., a linearly ordered set endowed with the usual open interval topology.

Suppose {A_i} is a discrete family of subsets of X. Let

\[A_i^* = \bigcup \{[a, b] \mid a, b \in A_i, [a, b] \cap A_j = \emptyset \ \forall j \neq i \}. \]

Then \[A_i \subseteq A_i^* \] and \[A_i^* \cap A_j^* = \emptyset \text{ whenever } i \neq j \]; in fact, the family \{A_i^*\} is discrete. To prove this, we select for each \(x \in X \) a neighborhood \(I_x \) which intersects at most one of the sets \(A_i \). If \(I_x \) meets exactly one element of \{A_i\}, say \(A_k \), and if \(x \) is not an endpoint of \(X \), we can take \(I_x \) to be an interval \((s, t)\). Then if \(i \neq k \), \((s, t)\) may intersect \(A_i^* \) only if it intersects some interval \([a, b]\) where \(a, b \in A_i \). But since \((s, t) \cap A_i = \emptyset \) and \(a, b \in A_i \), then \((s, t) \subseteq (a, b)\) which would imply that \(A_k \cap A_i^* = \emptyset \). But this is impossible if \(i \neq k \), so in this case \(I_x \) can intersect at most one of the sets \(A_i^* \). Other cases are treated analogously, so \{A_i^*\} (and consequently cl(A_i^*)) is discrete.

If we now write each \(A_i^* \) and \((U_i, A_i^*)'\) as the union of convex components, \(A_i^* = U_a A_i^a \) and \((U_i, A_i^*)' = U_y C_y \), the collection \(M = \{A_i^a, C_y\} \) inherits a linear order from \(X \) and is thus itself a linearly ordered set. We claim that in the ordered set \(M \), each of the sets \(A_i^a \) has an immediate successor whenever \(A_i^a \) intersects the closure of \(S_i^a \), the set of strict upper bounds for \(A_i^a \). For suppose \(A_i^a \cap \text{cl}(S_i^a) \neq \emptyset \). Then \(A_i^a \cap \text{cl}(S_i^a) \)

Received by the editors December 2, 1968.

1 This work was partially supported by the Research Corporation.

2 The author wishes to thank the referee for several clarifying suggestions.
contains precisely one point, say \(p \), every neighborhood of which intersects \(A_i \). Thus since \(\text{cl}(A_i) \) is discrete, there exists a neighborhood \((x, y) \) of \(p \) disjoint from \(\bigcup_{i \neq j} \text{cl}(A_i) \). Then \((x, y) \cap S_a \neq \emptyset \), so \((p, y) \neq \emptyset \). But the definition of \(A_i \) insures that \((p, y) \) is disjoint from both \(A_i \) and \(\bigcup_{i \neq j} A_j \), so there must exist some set \(C_y \) containing \((p, y) \). In the linear order on \(M \), \(C_y \) is the immediate successor to \(A_i \), and we will call it \(C_{i_y} \).

For each \(y \) select and fix some point \(k_{\gamma} \in C_y \). Then whenever \(A_i \cap \text{cl}(S_{i} \neq \emptyset \), there exists a unique \(k_{i_y} \in C_{i_y} \), the immediate successor of \(A_i \). In such cases, let \(I_{i} = [p, k_{i_y}] \) where \(p \in A_i \cap \text{cl}(S_{i} \); otherwise, if \(A_i \cap \text{cl}(S_{i} = \emptyset \), let \(I_{i} = \emptyset \). Define \(J_{i} \) similarly for the strict lower bounds of \(A_i \) (using the same collection of points \(k_{i} \in C_{i} \)). Then for each \(a \) and each \(i \), let \(U_{i} = J_{i} \cup A_i \cup I_{i} \). Each \(U_{i} \) is clearly an open set containing \(A_i \), so \(U_{i} = U_{i} \cup U_{i} \) is an open set containing \(A_i \). Since no \(A_i \) intersects any \(A_j \) for \(i \neq j \), and since the use of the same \(k_{i} \) throughout implies that no \(J_{i} \) or \(I_{i} \) may intersect any \(J_{j} \) or \(I_{j} \), it is clear that no \(U_{i} \) can intersect any \(U_{j} \) for \(i \neq j \). Thus \(U_{i} \cap U_{j} = \emptyset \) whenever \(i \neq j \), and hence \(X \) is collectionwise normal.

Now every subspace of \(X \) inherits both a topology as well as a linear order; these need not be compatible, even for open subspaces. (The open subspace \(\{\alpha + 1 \mid \alpha \text{ is a limit ordinal}\} \) of the linearly ordered ordinal space \(\{\gamma \mid \gamma < \Omega\} \) inherits the discrete topology but is of the same order type as the countable ordinals.) However, the two structures are compatible on convex subspaces of \(X \), whence convex subspaces of \(X \) are collectionwise normal. Therefore any open subset of \(X \)—being the disjoint union of open collectionwise normal subspaces (namely its convex components)—is collectionwise normal. This suffices to prove that every subset \(S \) of \(X \) is collectionwise normal, since if \(\{A_i\} \) is a discrete family in \(S \), then each point \(s \in S \) has a neighborhood \(U_s \cap S \) which meets at most one of the sets \(A_i \). But then \(U = U_s \cup U_s \) is an open set with the same property, and since \(U \) is collectionwise normal, so must be \(S \). Hence \(X \) is hereditarily collectionwise normal.

That \(X \) is completely normal (i.e., hereditarily normal) follows as a corollary. But it also may be proved more directly by a slight modification of the proof that \(X \) is collectionwise normal.

References

St. Olaf College