A five sphere decomposition of $E^{2n-1}$
HTML articles powered by AMS MathViewer
- by David Gillman
- Proc. Amer. Math. Soc. 24 (1970), 747-753
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257998-5
- PDF | Request permission
References
- R. H. Bing and M. L. Curtis, Imbedding decompositions of $E^{3}$ in $E^{4}$, Proc. Amer. Math. Soc. 11 (1960), 149–155. MR 117692, DOI 10.1090/S0002-9939-1960-0117692-1
- E. Valle Flores, On the extension of the theory of Lebesgue area to surfaces imbedded in $R_n$, Bol. Soc. Mat. Mexicana 6 (1949), 1–26 (Spanish). MR 0040399
- R. P. Goblirsch, On decompositions of $3$-space by linkages, Proc. Amer. Math. Soc. 10 (1959), 728–730. MR 112127, DOI 10.1090/S0002-9939-1959-0112127-9
- Ronald H. Rosen, Decomposing 3-space into circles and points, Proc. Amer. Math. Soc. 11 (1960), 918–928. MR 120611, DOI 10.1090/S0002-9939-1960-0120611-5
- Joseph Zaks, On finite decompositions of $E^{2n-1}$, Proc. Amer. Math. Soc. 20 (1969), 445–449. MR 235543, DOI 10.1090/S0002-9939-1969-0235543-X
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 24 (1970), 747-753
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257998-5
- MathSciNet review: 0257998