Generalized relative difference sets
HTML articles powered by AMS MathViewer
- by Stanley E. Payne
- Proc. Amer. Math. Soc. 25 (1970), 46-50
- DOI: https://doi.org/10.1090/S0002-9939-1970-0253921-8
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 56 (1976), 392.
Abstract:
A Bruck-Ryser type nonexistence theorem is given for a class of generalized relative difference sets. Some well-known results on $(v,k,\lambda )$-designs are generalized and a new class of relative difference sets is given.References
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275
- J. E. H. Elliott and A. T. Butson, Relative difference sets, Illinois J. Math. 10 (1966), 517–531. MR 193019
- J. K. Goldhaber, A note concerning subspaces invariant under an incidence matrix, J. Algebra 7 (1967), 389–393. MR 216362, DOI 10.1016/0021-8693(67)90078-6
- Burton W. Jones, The Arithmetic Theory of Quadratic Forms, Carcus Monograph Series, no. 10, Mathematical Association of America, Buffalo, N.Y., 1950. MR 0037321
- Donald E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965), 182–217. MR 175942, DOI 10.1016/0021-8693(65)90018-9
- Stanley E. Payne, A Bruck-Ryser type non-existence theorem, Bull. Amer. Math. Soc. 74 (1968), 922. MR 228368, DOI 10.1090/S0002-9904-1968-12086-5
- Stanley E. Payne, A nonexistence theorem for relative difference sets, Illinois J. Math. 14 (1970), 648–649. MR 268056
- S. E. Payne and M. F. Tinsley, On $v_{1}\times v_{2}\,(n,\,s,\,t)$ configurations, J. Combinatorial Theory 7 (1969), 1–14. MR 244074
- Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 46-50
- MSC: Primary 05.22; Secondary 10.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0253921-8
- MathSciNet review: 0253921