Decomposability of finitely presented modules
HTML articles powered by AMS MathViewer
- by R. B. Warfield
- Proc. Amer. Math. Soc. 25 (1970), 167-172
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254030-4
- PDF | Request permission
Abstract:
It is proved that a commutative ring with $1$ has the property that every finitely presented module is a summand of a direct sum of cyclic modules if and only if it is locally a generalized valuation ring. A Noetherian ring has this property if and only if it is a direct product of a finite number of Dedekind domains and an Artinian principal ideal ring. Any commutative local ring which is not a generalized valuation ring has finitely presented indecomposable modules requiring arbitrarily large numbers of generators.References
- Gorô Azumaya, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem, Nagoya Math. J. 1 (1950), 117–124. MR 37832
- D. G. Higman, Indecomposable representations at characteristic $p$, Duke Math. J. 21 (1954), 377–381. MR 67896
- Irving Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327–340. MR 46349, DOI 10.1090/S0002-9947-1952-0046349-0 W. Krull, Die verschiedenen Arten der Hauptidealringe, S.-B. Heidelberger Akad. Wiss. 6 (1924).
- A. I. Uzkov, On the decomposition of modules over a commutative ring into direct sums of cyclic submodules, Mat. Sb. (N.S.) 62(104) (1963), 469–475 (Russian). MR 0157986
- R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. MR 242885
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 167-172
- MSC: Primary 13.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254030-4
- MathSciNet review: 0254030