A note on finite metabelian $p$-groups
HTML articles powered by AMS MathViewer
- by J. D. Gillam
- Proc. Amer. Math. Soc. 25 (1970), 189-190
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254132-2
- PDF | Request permission
Abstract:
Let $A$ be an abelian subgroup of maximal order in the finite metabelian $p$-group $P$. It is shown that there exists a normal abelian subgroup ${A_1}$ of $P$ such that the order of ${A_1}$ is equal to the order of $A$.References
- J. L. Alperin, Large Abelian subgroups of $p$-groups, Trans. Amer. Math. Soc. 117 (1965), 10–20. MR 170946, DOI 10.1090/S0002-9947-1965-0170946-4
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 189-190
- MSC: Primary 20.25
- DOI: https://doi.org/10.1090/S0002-9939-1970-0254132-2
- MathSciNet review: 0254132