CLASS NUMBER IN CONSTANT EXTENSIONS
OF ELLIPTIC FUNCTION FIELDS

JAMES R. C. LEITZEL

Abstract. For F/K a function field of genus one having the finite field K as field of constants and E the constant extension of degree n we give explicitly the class number of the field E as a polynomial expression in terms of the class number of F and the order of the field K. Applications are made to determine the degree of a constant extension E necessary to have a predetermined prime p occur as a divisor of the class number of the field E.

Let F/K be a function field in one variable with exact field of constants K, a finite field having q elements. The order of the finite group of divisor classes of degree zero is the class number h_F. Let E denote the constant extension of degree n and h_E the class number of E. It is known that $h_E = kh_F$ for some integer k. In this note we give an explicit determination of k in the particular case that F has genus one and give several applications of it. Precisely, we prove the

Theorem. If F/K is a function field with genus one and E/F is the constant extension of degree n then

$$h_E = \sum_{l=1}^{[n-1/2]} (-1)^{l-1} c_l h_F^l$$

where

$$c_l = \sum_{j=0}^{[n-j/2]} (-1)^j \frac{n}{n-j} \binom{n-j}{j} \binom{n-2j}{l} q^j (1 + q)^{n-2j-l}.$$

The applications give the degree of a constant extension E that must be made for a given prime p to occur as a divisor of h_E.

We begin with some preliminary observations on the zeta function of F and some results on binomial expansions. For a field F as described above, the zeta function is given by

$$\zeta_F(s) = \frac{L(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

where $L(u)$ is a polynomial with rational integral coefficients of degree $2g$, g the genus of F, [2]. It is known that $L(1) = h_F$. In fact if $L(u) = \sum_{i=0}^{2g} a_i u^i = \prod_{i=1}^{2g} (1 - \alpha_i u)$ we have $a_0 = 1$, $a_{2g} = q^g$, and

Received by the editors September 2, 1969.

AMS Subject Classifications. Primary 1078; Secondary 1278, 1435.

Key Words and Phrases. Genus one, constant extension, binomial expansions.
\[a_1 = N_1 - (1 + q). \]

Here \(N_1 \) denotes the number of prime divisors of degree one for the field \(F \). In a constant extension of degree \(n \) the polynomial numerator is given by

\[L_n(u) = \prod_{i=1}^{2q} (1 - \alpha_i u). \]

Thus the number of prime divisors of degree one in the extension of degree \(n \) is given

\[N_n = 1 + q^n - \sum_{i=1}^{2q} \alpha_i^n. \]

If we assume that \(F \) has genus one, then also \(E \) has genus one since \(F \) is conservative. Hence \(L_n(u) \) is a quadratic polynomial for all \(n \) and the class number is precisely \(N_n \), the number of prime divisors of degree one. In particular we have \(L_F(u) = 1 - [1 + q - h_F]u + qu^2 \). The formula (1) involves the reciprocals of the roots; hence in our further work we shall be concerned with the following two relations:

1. \(L^*(x) = x^2 - [1 + q - h_F]x + q \) with roots \(\alpha, \beta \).
2. \(h_F = 1 + q^n - (\alpha^n + \beta^n) \) giving the class number for a constant extension of degree \(n \).

As a first step we collect some results on the roots of a quadratic polynomial such as (2). Since we can be more general, we assume we have given a polynomial \(x^2 = Px - Q \) with \(P \) and \(Q \) not necessarily relatively prime. Our discussion is adapted from Lucas [5], and we repeat his proofs for convenience. If \(\alpha, \beta \) denote the roots of \(x^2 - Px + Q = 0 \) then, setting \(\delta = \alpha - \beta \), we have the following relations:

\[\alpha + \beta = P, \quad 2\alpha = P + \delta, \]
\[\alpha\beta = Q, \quad 2\beta = P - \delta, \]
\[\Delta = P^2 - 4Q, \quad \delta^2 = \Delta. \]

We define \(V_n = \alpha^n + \beta^n \) and it is easy to check that we have the following recursion: \(V_{n+1} = PV_{n+1} - QV_n \).

In the discussion which follows we make use of two identities which can be found in Chrystal [1, pp. 178-179].

\[X^n + Y^n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} (XY)^j(X + Y)^{n-2j}, \]
\[\frac{X^{n+1} - Y^{n+1}}{X - Y} = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \binom{n-j}{j} (XY)^j(X + Y)^{n-2j}. \]
From the relations in (4) we have

\[2^n \alpha^n = (P + \delta)^n = \sum_{r=0}^{n} \binom{n}{r} P^{n-r} \delta^r, \]

\[2^n \beta^n = (P - \delta)^n = \sum_{r=0}^{n} (-1)^r \binom{n}{r} P^{n-r} \delta^r. \]

Adding these we conclude, using the definition of \(V_n \) and (4),

\[2^n V_n = (P + \delta)^n + (P - \delta)^n = 2 \sum_{r=0}^{n} \binom{n}{r} P^{n-r} \delta^r \quad \text{(}\nu\ \text{even)} \]

which gives

\[2^{n-1} V_n = \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} P^{n-2j} \delta^j. \]

On the other hand if we set \(X = P + \delta, \ Y = P - \delta \) in (5) we conclude

\[2^n V_n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} (4Q)^j (2P)^{n-2j} \]

which after simplification yields

\[V_n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} Q^j P^{n-2j}. \]

Lemma 1. If \(p \) is a prime and \(p \mid P \), then \(V_n = (-Q)^{n/2} V_0(p) \) if \(n \) is even and \(V_n = 0 \) (p) if \(n \) is odd.

Proof. From the recursion relations on \(V_n \) we see \(V_2 = -QV_0(p) \), \(V_3 = 0 \) (p) and the result follows by induction.

Lemma 2. If \(p \) is an odd prime, then

(a) if \(\left\langle \Delta/p \right\rangle = 1 \) we have \(V_{p-1} = 2 \) (p) and

(b) if \(\left\langle \Delta/p \right\rangle = -1 \) we have \(V_{p+1} = 2Q \) (p).

Proof. (a) Since \(\Delta^{(p-1)/2} \equiv 1 \) (p) setting \(n = p-1 \) in (10) gives

\[2^{p-2} V_{p-1} = P^{p-1} + \binom{p-1}{2} P^{p-3} \Delta + \cdots + \Delta^{(p-1)/2}. \]

But

\[\binom{p-1}{2j} \equiv 1 \] (p);

thus we have
2^{p-2}V_{p-1} = \frac{P^{p+1} - \Delta^{(p+1)/2}}{P^2 - \Delta} \ (p).

Now \(P^{p+1} = P^1 \ (p) \) and \(\Delta^{(p+1)/2} = \Delta \ (p) \); thus

\[2^{p-2}V_{p-1} = 1 \ (p) \]

and (a) follows.

If \((\Delta/p) = -1 \) then \(\Delta^{(p-1)/2} = -1 \ (p) \) and setting \(n = p+1 \) in (10) gives

\[2^pV_{p+1} = P^{p+1} + \binom{p+1}{2} P^{p-1} \Delta + \cdots + \Delta^{(p+1)/2} \]

but

\[\binom{p+1}{2j} = 0 \ (p). \]

Thus \(2V_{p+1} = 2^pV_{p+1} = P^2 - \Delta = 4Q \ (p) \) and (b) follows.

Proof of Theorem. Specializing these comments now to (2) we have \(P = 1 + q - h_F \) and \(Q = q \). Thus from (12) we get

\[V_n = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} q^j [1 + q - h_F]^{n-2j}. \tag{13} \]

Rearranging terms in (13) to give a polynomial expression in \(h_F \) we find

\[V_n = \sum_{l=0}^{n} (-1)^l c_l h_F^l \tag{14} \]

where

\[c_l = \sum_{j=0}^{\lfloor n-1/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} \binom{n-2j}{l} q^j (1 + q)^{n-2j-l}. \tag{15} \]

The \(c_l \) are rational integers since

\[\frac{n}{n-j} \binom{n-j}{j} = \frac{n}{j} \binom{n-j-1}{j-1} = 2 \binom{n-j}{j} - \binom{n-j-1}{j}. \]

It is easy to check that \(c_n = 1 \) and \(c_{n-1} = n(1+q) \). Using the identity (5) we find \(c_0 = 1 + q^n \) and (6) gives \(c_1 = n((q^n-1)/(q-1)) \). Substituting (14) and the value of \(c_0 \) in (3) we find

\[h_E = \sum_{l=1}^{n} (-1)^{l-1} c_l h_F^l. \tag{16} \]
Consequently since \(h_E = k h_F \) we have explicitly determined \(k \) as a polynomial expression in \(h_F \); namely

\[
(17) \quad k = \sum_{l=1}^{n} (-1)^{l-1} c_l h_F^{l-1}.
\]

We state our applications of these results in the following propositions:

Proposition 1. If \(p = \text{char } F \) then

(a) if \(h_F \equiv 1 \pmod{p} \) we have \(h_E \equiv 1 \pmod{p} \) for all finite constant extensions \(E \);

(b) if \(h_F \not\equiv 1 \pmod{p} \) and \(f = \text{ord } (1 - h_F) \pmod{p} \) then \(h_E = 0 \pmod{p} \) for \(\text{deg}(E/F) = f \).

Proof. From (15) we find \(c_l \equiv \binom{n}{l} \pmod{p} \) since \(q \equiv 0 \pmod{p} \). Thus from (16) we get

\[
(18) \quad h_E \equiv \sum_{l=1}^{n} (-1)^{l-1} \binom{n}{l} h_F^{l} \pmod{p},
\]

which after rewriting becomes

\[
(19) \quad h_E \equiv 1 - (1 - h_F)^n \pmod{p}
\]

and the proposition follows.

Note. These conclusions are compatible with statements on the \(p \)-rank of the group of divisor classes of degree zero in elliptic function fields of characteristic \(p \) over an algebraically closed field of constants as given by Hasse [3].

Proposition 2. If \(p \) is a prime and \(p^m \| h_F \), \(m \geq 1 \), then \(p^{m+1} \| h_E \) for a constant extension \(E/F \) of degree \(n \) if and only if \(p \| n((q^n - 1)/(q - 1)) \).

Proof. From (17) since \(p \| h_F \) we have \(p \| k \) if and only if \(p \| c_1 \) and

\[
(20) \quad c_1 = n((q^n - 1)/(q - 1)).
\]

Corollary. If \(p = \text{char } F \) then \(p^{m+1} \| h_E \) if and only if \(p \| n \) (Leitzel [4]).

Proposition 3. If \(p \| 1 + q - h_F \) then for a constant extension \(E \) of degree \(n \) we have

(a) \(h_E \equiv 1 + q^n \pmod{p} \) if \(n \) is odd,

(b) \(h_E \equiv (1 + q^{n/2})^2 \pmod{p} \) if \(n = 2 \pmod{4} \),

(c) \(h_E \equiv (1 - q^{n/2})^2 \pmod{p} \) if \(n = 0 \pmod{4} \).

Proof. \(h_E = 1 + q^n - V_n \) so this follows directly from Lemma 1, and \(V_0 = 2 \).
Proposition 4. If char $F \neq 2$ and E/F is the constant extension of degree 3 then $h_F \equiv 0 \ (2)$.

Proof. We may assume $2 \not| h_F$. Then $q \equiv 1 \ (2)$ and from (17) we have $k = c_1 + c_2 h_F + c_3 h_F^2$, with $h_F \equiv c_1 \equiv c_3 \equiv 1 \ (2)$, $c_2 \equiv 0 \ (2)$.

Proposition 5. Let p be an odd prime, $p \not\equiv \text{char} \ F$, and such that $|K| = q \equiv 1 \ (p)$. If $p \nmid h_F$ then $p \mid h_B$ for E/F a constant extension of degree dividing $(p^2-1)/2$.

Proof. As earlier let $\Delta = [1+q-h_F]^2 - 4q$. Then since $h_F = 1+q^n - V_n$ we see from Lemma 2 that if $(\Delta/p) = 1$, $n = p-1$ suffices and if $(\Delta/p) = -1$, $n = p+1$ since $q \equiv 1 \ (p)$. If $p \nmid \Delta$ then $(1+q-h_F)^2 - 4q \equiv 0 \ (p)$, and since $q \equiv 1 \ (p)$ we conclude $h_F(4-h_F) \equiv 0 \ (p)$. By hypothesis $p \nmid h_F$ so $h_F \equiv 4 \ (p)$. From (17) with $n = 2$ we find $k = 2(q+1) - h_F$; thus $k \equiv 0 \ (p)$ if $h_F \equiv 4 \ (p)$, and in this case an extension of degree 2 suffices. In all three possibilities $n \mid (p^2-1)/2$.

Corollary. If p is an odd prime, $p \not\equiv \text{char} \ F$, then $p \mid h_B$ for a constant extension E/F of degree dividing $f((p^2-1)/2)$ where $f = \text{ord} \ q \ (p)$.

Bibliography

Ohio State University, Columbus, Ohio 43210