Class number in constant extensions of elliptic function fields
HTML articles powered by AMS MathViewer
- by James R. C. Leitzel
- Proc. Amer. Math. Soc. 25 (1970), 183-188
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255516-9
- PDF | Request permission
Abstract:
For $F/K$ a function field of genus one having the finite field $K$ as field of constants and $E$ the constant extension of degree $n$ we give explicitly the class number of the field $E$ as a polynomial expression in terms of the class number of $F$ and the order of the field $K$. Applications are made to determine the degree of a constant extension $E$ necessary to have a predetermined prime $p$ occur as a divisor of the class number of the field $E$.References
- G. Chrystal, A textbook of algebra. Vol. II, A. and C. Black, Edinburgh, 1889; reprint of 6th ed., Chelsea, New York.
- Martin Eichler, Introduction to the theory of algebraic numbers and functions, Pure and Applied Mathematics, Vol. 23, Academic Press, New York-London, 1966. Translated from the German by George Striker. MR 0209258 H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I, J. Reine Angew. Math. 175 (1936), 55-62.
- James R. C. Leitzel, Galois cohomology and class number in constant extension of algebraic function fields, Proc. Amer. Math. Soc. 22 (1969), 206–208. MR 242799, DOI 10.1090/S0002-9939-1969-0242799-6
- Edouard Lucas, Theorie des Fonctions Numeriques Simplement Periodiques, Amer. J. Math. 1 (1878), no. 4, 289–321 (French). MR 1505176, DOI 10.2307/2369373
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 183-188
- MSC: Primary 10.77
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255516-9
- MathSciNet review: 0255516