Automorphisms of countable primary abelian groups
HTML articles powered by AMS MathViewer
- by Paul Hill
- Proc. Amer. Math. Soc. 25 (1970), 135-140
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255674-6
- PDF | Request permission
Abstract:
It is proved that the automorphism group $A$ of a countable primary abelian group $G$ is transitive on certain subsets of subgroups of $G$. One such subset of subgroups in case $G$ is without elements of infinite height is the collection of all basic subgroups of $G$ with a fixed corank, finite or infinite.References
- Haya Freedman, The automorphisms of countable primary reduced Abelian groups, Proc. London Math. Soc. (3) 12 (1962), 77–99. MR 133381, DOI 10.1112/plms/s3-12.1.77
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783 P. Hill, Enumeration of subgroups of small abelian groups, (to appear).
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- H. Leptin, Zur Theorie der überabzählbaren abelschen $p$-Gruppen, Abh. Math. Sem. Univ. Hamburg 24 (1960), 79–90 (German). MR 122875, DOI 10.1007/BF02942022
- Charles K. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math. 11 (1967), 134–144. MR 202832
- Kenjiro Shoda, Über die Automorphismen einer endlichen Abelschen Gruppe, Math. Ann. 100 (1928), no. 1, 674–686 (German). MR 1512510, DOI 10.1007/BF01448871 D. Tarwater, Orbits of basic subgroups of primary abelian groups under automorphisms, (to appear).
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 135-140
- MSC: Primary 20.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255674-6
- MathSciNet review: 0255674