Bounds for zeros of some special functions
HTML articles powered by AMS MathViewer
- by Herbert W. Hethcote
- Proc. Amer. Math. Soc. 25 (1970), 72-74
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255909-X
- PDF | Request permission
Abstract:
For $n \geqq 1$ let ${b_n}$ and ${c_n}$ be zeros (ordered by increasing values) of $u(x)$ and $v(x)$, respectively, which are non-trivial solutions of $u'' + p(x)u = 0$ and $v'' + q(x)v = 0$ with continuous $p(x)$ and $q(x)$. It is shown that if ${b_n} - {c_n} \to 0$ as $n \to \infty ,\;p(x) \geqq q(x)$, and either $p(x)$ or $q(x)$ is nonincreasing, then ${b_n} \geqq {c_n}$ for $n \geqq 1$. Inequalities related to asymptotic expansions are obtained for the negative zeros ${a_n}$ of the Airy function $Ai(z)$ and the zeros ${j_{v,n}}$ of the Bessel function ${J_v}(x)$.References
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- J. C. P. Miller, The Airy Integral, Giving Tables of Solutions of the Differential Equation $y''=xy$, Cambridge, at the University Press; New York, The Macmillan Company, 1946. MR 0018971 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939. MR 1, 14.
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 72-74
- MSC: Primary 34.42; Secondary 33.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0255909-X
- MathSciNet review: 0255909