An invariance principle for reversed martingales
HTML articles powered by AMS MathViewer
- by R. M. Loynes
- Proc. Amer. Math. Soc. 25 (1970), 56-64
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256444-5
- PDF | Request permission
Abstract:
Let ${X_n},\;n = 1,2, \cdots$, be a reversed martingale with zero mean and for each $n$ construct a random function ${W_n}(t)$, $0 \leqq t \leqq 1$, by a suitable method of interpolation between the values ${X_k}/{(EX_n^2)^{1/2}}$ at times $EX_k^2/EX_n^2$; these are the natural times to use. Then it is shown that the distribution of ${W_n}$ (in function space $C$ or $D$) converges weakly to that of the Wiener process, if the finite-dimensional distributions converge appropriately. It is also shown that the sufficient conditions recently given by the author for the central limit theorem for such martingales also imply convergence of finite-dimensional distributions. Illustrations of the use of these results are given in applications to $U$statistics and sums of independent random variables. A result for forward martingales exactly analogous to the first result above is also given, but is given no emphasis.References
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Wassily Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statistics 19 (1948), 293–325. MR 26294, DOI 10.1214/aoms/1177730196
- R. M. Loynes, The central limit theorem for backwards martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 1–8. MR 261674, DOI 10.1007/BF00535793
- H. Robbins, D. Siegmund, and J. Wendel, The limiting distribution of the last time $s_{n}\geq n\varepsilon$, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 1228–1230. MR 243625, DOI 10.1073/pnas.61.4.1228
- Volker Strassen, Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 315–343. MR 0214118
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 56-64
- MSC: Primary 60.30; Secondary 60.40
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256444-5
- MathSciNet review: 0256444