On the algebraic independence of symmetric functions
HTML articles powered by AMS MathViewer
- by G. K. Haeuslein
- Proc. Amer. Math. Soc. 25 (1970), 179-182
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257042-X
- PDF | Request permission
Abstract:
The purpose of this note is to establish a necessary and sufficient condition for the algebraic independence of certain sets of homogeneous symmetric polynomials which is used in 2. to solve a problem proposed by L. Flatto [2].References
- A. Cauchy, Mémoire sur diverses formules relatives à l’algèbre et à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 698-711.
- Leopold Flatto, Basic sets of invariants for finite reflection groups, Bull. Amer. Math. Soc. 74 (1968), 730–734. MR 225892, DOI 10.1090/S0002-9904-1968-12017-8 T. J. L. Bromwich, An introduction to the theory of infinite series, 2nd ed., Macmillan, London, 1926.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 179-182
- MSC: Primary 12.30; Secondary 20.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257042-X
- MathSciNet review: 0257042