Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A property of torsion-free modules over left Ore domains
HTML articles powered by AMS MathViewer

by Arthur Van de Water
Proc. Amer. Math. Soc. 25 (1970), 199-201
DOI: https://doi.org/10.1090/S0002-9939-1970-0257155-2

Abstract:

It is well known that for an integral domain $A$, the property that a module is divisible if and only if it is injective is equivalent to the property that $A$ is a Dedekind domain. In this paper, it is shown that if $A$ is a left Ore domain, then a torsion-free left $A$-module is divisible if and only if it is injective.
References
    N. Bourbaki, Algèbre, Chapitre 1, Hermann, Paris, 1958.
  • N. Bourbaki, Éléments de mathématique. Première partie. Fascicule VI. Livre II: Algèbre. Chapitre 2: Algèbre linéaire, Actualités Sci. Indust., No. 1236, Hermann, Paris, 1962 (French). Troisième édition, entièrement refondue. MR 0155831
  • Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
  • Lawrence Levy, Torsion-free and divisible modules over non-integral-domains, Canadian J. Math. 15 (1963), 132–151. MR 142586, DOI 10.4153/CJM-1963-016-1
  • Oystein Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (1931), no. 3, 463–477. MR 1503010, DOI 10.2307/1968245
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.90
  • Retrieve articles in all journals with MSC: 16.90
Bibliographic Information
  • © Copyright 1970 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 25 (1970), 199-201
  • MSC: Primary 16.90
  • DOI: https://doi.org/10.1090/S0002-9939-1970-0257155-2
  • MathSciNet review: 0257155