The converse of Cauchy’s theorem for arbitrary Riemann surfaces
HTML articles powered by AMS MathViewer
- by Myron Goldstein
- Proc. Amer. Math. Soc. 25 (1970), 177-178
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257345-9
- PDF | Request permission
Abstract:
In this paper, we prove a generalization of the converse of Cauchy’s theorem which is valid for arbitrary hyperbolic Riemann surfaces. The tools used are the Kuramochi compactification and the concept of generalized normal component.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1–24. MR 138747, DOI 10.1007/BF01195147
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 177-178
- MSC: Primary 30.45
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257345-9
- MathSciNet review: 0257345