Weak sequential completeness in spaces of operators
HTML articles powered by AMS MathViewer
- by J. M. Baker
- Proc. Amer. Math. Soc. 25 (1970), 193-198
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257707-X
- PDF | Request permission
References
- J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057–1071 (French). MR 27440
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523 M. Levin and S. Saxon, A note on the inheritance properties of locally convex spaces by subspaces of countable codimension, Florida State University, Tallahassee, 1968 (unpublished).
- R. D. McWilliams, On certain Banach spaces which are $w^{\ast }$-sequentially dense in their second duals, Duke Math. J. 37 (1970), 121–126. MR 259570
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 193-198
- MSC: Primary 46.10
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257707-X
- MathSciNet review: 0257707