A REAL ANALOGUE OF THE GELFAND-NEUMARK THEOREM

TAMIO ONO

Abstract. Let A be a real Banach *-algebra enjoying the following three conditions: $\|x^* x\| = \|x^*\| \|x\|$, $Sp x^* x \geq 0$, and $\|x^*\| = \|x\|$ ($x \in A$). It is shown, after Ingelstam, Palmer, and Behncke, as a real analogue of the Gelfand-Neumark theorem, that A is isometrically *-isomorphic onto a real C^*-algebra acting on a suitable real (or complex) Hilbert space. The converse is obvious.

The aim of this note is, as a real analogue of the Gelfand-Neumark theorem, to prove the following

Theorem. A real Banach *-algebra A is isometrically *-isomorphic onto a real C^*-algebra acting on a real (or complex) Hilbert space if and only if it satisfies the following three conditions:

1. $\|x^* x\| = \|x^*\| \|x\|$,
2. $Sp x^* x \geq 0$, and
3. $\|x^*\| = \|x\|$ ($x \in A$).

The above theorem was conjectured explicitly by Rickart [5, p. 181] and proved by Ingelstam [2] (cf. also Palmer [3, 4] and Behncke [1]). Their proofs were based on complexification of a real Banach *-algebra. An alternative proof which we shall give in this note will be done by real *-representation on real Hilbert space and by complexification of a real Hilbert space.

Let A be a real Banach *-algebra satisfying the conditions stated in the theorem, and H the set of hermitian elements in A. Let R be the field of real numbers. In view of (2), the involution is hermitian. Put $\mu(h) = \sup(\lambda; \lambda \in \text{spec}(h))$ for all h in H. In view of (2), A is symmetric. In view of (3), the involution is continuous. So, we can make use of Rickart [5, Lemma 4.7.10] to get the sublinearity of μ on H, that is,

(i) $\mu(\alpha h) = \alpha \mu(h)$ and
(ii) $\mu(h + k) \leq \mu(h) + \mu(k)$,
where $0 \leq \alpha \in \mathbb{R}$, h, $k \in H$. Owing to the extension theorem of Hahn and Banach, for a fixed element a in A, there exists a real linear functional, say g, on H such that $g(h) \leq \mu(h)$ ($h \in H$) and such that $g((aa^*)^2) = \mu((aa^*)^2)$. Decompose $x = h + k$, where $h = (1/2)(x + x^*) \in H$ and $k = (1/2)(x - x^*)$ being skew adjoint. Put $f(x) = g(h)$ for all x in A. Since $\mu(-x^*x) \leq 0$, we have $f(x^*x) \geq 0$. Thus, f is a real state on A. It is easy to construct a *-representation real Hilbert space and a real *-representation ψ of A. Moreover, if $aa^* \neq 0$, $\psi(a) \neq 0$. Hence, \{a; aa^* = 0\} is the *-radical of A, that is, the intersection of kernels of all real *-representations of A. In view of (1), the *-radical must be \{0\}. Thus, there exist a *-representation real Hilbert space and a faithful real *-representation of A. Hence, A is isometrically *-isomorphic onto a real C^*-algebra acting on a real Hilbert space.

In the rest of the if-part proof, we must show that a real C^*-algebra A acting on a real Hilbert space \mathfrak{H} is isometrically *-isomorphic onto a suitable real C^*-algebra A' acting on a suitable complex Hilbert space \mathfrak{H}_c. Construct \mathfrak{H}_c as the set of formal elements $x + iy$, where x, $y \in \mathfrak{H}$. Introduce into \mathfrak{H}_c an equality relation: $x_1 + iy_1 = x_2 + iy_2$ iff $x_1 = x_2$ and $y_1 = y_2$ (x_1, x_2, y_1, $y_2 \in \mathfrak{H}$), an addition: $(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$ (x_1, x_2, y_1, $y_2 \in \mathfrak{H}$), a scalar multiplication: $(a + ib)(x + iy) = ax - by + i(bx + ay)$ (a, $b \in \mathbb{R}$, x, $y \in \mathfrak{H}$), and an inner product:

$$(x_1 + iy_1, x_2 + iy_2) = (x_1, x_2) + (y_1, y_2) + i((y_1, x_2) - (x_1, y_2))$$

Then, \mathfrak{H}_c becomes a complex Hilbert space. For each a in A, we define a mapping $a': x + iy \rightarrow ax + iay$ (x, $y \in \mathfrak{H}$). It is easy to see that a' is a bounded linear operator acting on \mathfrak{H}_c with $\|a'\| = \|a\|$. Put $A' = \{a'; a \in A\}$. The mapping: $a \rightarrow a'$ gives an isometric *-isomorphism of A onto A'. This completes the if-part proof of the theorem. And the only-if-part proof of the theorem goes as usual fashion.

References

NAGOYA INSTITUTE OF TECHNOLOGY, NAGOYA, JAPAN