Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Free coalgebras in a category of rings

Author: Robert Davis
Journal: Proc. Amer. Math. Soc. 25 (1970), 155-158
MSC: Primary 08.30; Secondary 18.00
Erratum: Proc. Amer. Math. Soc. 25 (1970), 922.
MathSciNet review: 0258712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{R}$ be the category of commutative rings with unity and unity-preserving homomorphisms, and let $ \Pi $ be a small algebraic theory, i.e., an algebraic theory with a rank in the sense of Linton. The category $ \mathcal{A}$ of $ \Pi $-coalgebras in $ \mathcal{R}$ is the category of coproduct-preserving functors $ {\Pi ^{\ast}} \to \mathcal{R}$. We prove that the standard forgetful functor $ U:\mathcal{A} \to \mathcal{R}$ has a right adjoint $ V$.

References [Enhancements On Off] (What's this?)

  • [1] F. E. J. Linton, Some aspects of equational categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 84–94. MR 0209335
  • [2] I. G. Macdonald, Algebraic geometry. Introduction to schemes, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0238845

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 08.30, 18.00

Retrieve articles in all journals with MSC: 08.30, 18.00

Additional Information

Keywords: Algebraic theory with a rank, right adjoint, cosolution set, tensor product of rings
Article copyright: © Copyright 1970 American Mathematical Society