A nonembedding theorem for finite groups
HTML articles powered by AMS MathViewer
- by Ernest L. Stitzinger
- Proc. Amer. Math. Soc. 25 (1970), 124-126
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258936-1
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 34 (1972), 631.
Abstract:
Let $N$ be the class of nilpotent groups with the following properties: (1) The center of $N,{Z_ \bot }(N)$ is of prime order. (2) There exists an abelian characteristic subgroup $A$ of $N$ such that ${Z_1}(N) \subset A \subseteq {Z_2}(N)$ where ${Z_2}(N)$ is the second term in the upper central series of $N$. The main result shown is the following: $N \in \mathfrak {X}$, then $N$ cannot be an invariant subgroup contained in the Frattini subgroup of a finite group.References
- Chong-yun Chao, A theorem of nilpotent groups, Proc. Amer. Math. Soc. 19 (1968), 959–960. MR 229721, DOI 10.1090/S0002-9939-1968-0229721-2
- Charles Hobby, The Frattini subgroup of a $p$-group, Pacific J. Math. 10 (1960), 209–212. MR 113949
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 124-126
- MSC: Primary 20.25
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258936-1
- MathSciNet review: 0258936