1. Introduction. The polynomials $P_n(x)$ and $Q_n(x)$, which we are concerned with here, were introduced in 1951 by H. S. Shapiro [5, p. 39] in his study of the magnitude of certain trigonometric sums. They are defined recursively by the formulas

\begin{align*}
P_{n+1}(x) &= P_n(x) + x^n Q_n(x), & Q_{n+1}(x) &= P_n(x) - x^n Q_n(x),
\end{align*}

where $n \geq 0$ and $P_0(x) = Q_0(x) = 1$. (See [4] also. Note in this reference that $P_0(x) = Q_0(x) = x$.)

These polynomials have been used by Kahane and Salem in their book [1] to prove several theorems about trigonometric series. Rider [2] used a generalization of these polynomials to complete the solution of a problem partially solved in [4]. In a more recent paper Rider [3] employed the polynomials to exhibit certain subalgebras of the group algebra of the unit circle. In particular, in this paper Rider obtained a special case of Theorem 4 below.

The first few polynomials are

\begin{align*}
P_1(x) &= 1 + x, & P_2(x) &= 1 + x + x^2 - x^3, \\
P_3(x) &= 1 + x + x^2 - x^3 + x^4 + x^5 - x^6 + x^7, \\
Q_1(x) &= 1 - x, & Q_2(x) &= 1 + x - x^2 + x^3, \\
Q_3(x) &= 1 + x + x^2 - x^3 - x^4 - x^5 + x^6 - x^7.
\end{align*}

It is clear from this definition that $\deg P_n = \deg Q_n = 2^n - 1$.

In this note we will derive a relation between $P_n(x)$ and $Q_n(x)$ and use it to show that these polynomials have equal discriminants. We will also find a formula for the resultant of the two polynomials, and develop an explicit formula for their coefficients. The latter will then be used to compute the value of $P_n(x)$ at $x = \pm 1$, $\pm i$, and certain other points on the unit circle.

2. We begin by deriving the relation that exists between $P_n(x)$ and $Q_n(x)$.

Theorem 1. $Q_n(x) = (-1)^n x^{2^n - 1} P_n(-1/x)$, $n \geq 0$.

Proof. By induction. The theorem holds for $n = 0, 1$. Assume the relation for n, $n \geq 1$. Then

Received by the editors February 13, 1969 and, in revised form, September 18, 1969.
\[(-1)^{n+1}x^{2^{n+1}-1}P_{n+1}(-1/x) \]
\[= (-1)^{n+1}x^{2^{n+1}-1}[P_n(-1/x) + (-1/x)^2Q_n(-1/x)] \]
\[= (-1)^{n+1}x^{2^{n+1}-1}[(-1)^nQ_n(x) / x^{2^n-1} + x^{-2^n}(-1)^n(-1/x)^{2^n-1}P_n(x)] \]
\[= P_n(x) - x^{2^n}Q_n(x) = Q_{n+1}(x). \]

The following properties of the discriminant \(D \) of a polynomial will be of use in establishing the corollary below. Let \(c \neq 0 \) be a constant and \(f(x) \) by a polynomial of degree \(n \). Then

(i) \(D(f(cx)) = c^{n(n-1)}D(f(x)) \).
(ii) \(D(cf(x)) = c^{2n-2}D(f(x)) \).
(iii) \(D(x^nf(1/x)) = D(f(x)) \).

Corollary. \(D(P_n(x)) = D(Q_n(x)), n \geq 0 \).

Proof.

\[D(Q_n(x)) = D((-1)^nx^{2^n-1}P_n(-1/x)) \]
\[= D((-1)^{n+1}x^{2^{n+1}-1}P_n(1/x)), \]
using (i) with \(c = -1 \). The corollary then follows from (ii) and (iii).

The first few completely factored values of \(D(P_n(x)) \) are listed in the table below

<table>
<thead>
<tr>
<th>(n)</th>
<th>(D(P_n(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(-2 \cdot 11)</td>
</tr>
<tr>
<td>3</td>
<td>(2^{10} \cdot 5^2 \cdot 193)</td>
</tr>
<tr>
<td>4</td>
<td>(2^{34} \cdot 32834009652827)</td>
</tr>
</tbody>
</table>

We next recall several properties of the resultant \(R \) of two polynomials \(f \) and \(g \) of degree \(n \) and \(m \) respectively.

(i) \(R(f, cg) = c^nR(f, g) \), \(c \) a constant.
(ii) \(R(f, g) = a^dR(f, g+\lambda f) \), where \(a \) is the leading coefficient of \(f \), \(\lambda \) is an arbitrary polynomial, and \(d = \deg g - \deg (g+\lambda f) \).
(iii) \(R(f, g) = (-1)^mnR(g, f) \).
(iv) \(R(f, gh) = R(f, g)R(f, h) \).

Theorem 2. \(R(P_n(x), Q_n(x)) = (-1)^{n-1}2^{2^{n+1}-n-2}, n \geq 1 \).

Proof. For \(n = 1 \) we have \(R(P_1, Q_1) = 2 \). Suppose \(n > 1 \). Then
\[R(P_n, Q_n) = R(P_{n-1} + x^{2^{n-1}}Q_{n-1}, P_{n-1} - x^{2^{n-1}}Q_{n-1}) \]
\[= R(P_{n-1} + x^{2^{n-1}}Q_{n-1}, 2P_{n-1}) \]
\[= -2^{2n-1}R(P_{n-1}, P_{n-1} + x^{2^{n-1}}Q_{n-1}) \]
\[= -2^{2n-1}R(P_{n-1}, x^{2^{n-1}}Q_{n-1}) \]
\[= -2^{2n-1}R(P_{n-1}, x^{2^{n-1}})R(P_{n-1}, Q_{n-1}). \]

But \(R(P_{n-1}, x^{2^{n-1}}) = 1. \) Hence \(R(P_n, Q_n) = -2^{2n-1}R(P_{n-1}, Q_{n-1}). \) From this reduction step, used repeatedly, we obtain the evaluation \(R(P_n, Q_n) = \prod_{m=2}^{n} (-2^{2^{m-1}}) = (-1)^{n-1}2^{2^{n+1}-n-2}. \quad \)

The next theorem permits the generation of \(P_n(x) \) and \(Q_n(x) \) without combining the two types of polynomials.

Theorem 3.

\[P_{n+1}(x) = P_n(x^2) + xP_n(-x^2), \quad n \geq 0. \]
\[Q_{n+1}(x) = Q_n(x^2) + xQ_n(-x^2), \quad n \geq 1. \]

Proof. By induction. The formulas are true for \(n = 0, 1. \) Assume both formulas hold for \(n, n \geq 1. \) Then

\[P_{n+1}(x) = P_n(x) + x^{2^n}Q_n(x) \]
\[= [P_{n-1}(x^2) + xP_{n-1}(-x^2)] + x^{2^n}[Q_{n-1}(x^2) + xQ_{n-1}(-x^2)] \]
\[= [P_{n-1}(x^2) + x^2Q_{n-1}(x^2)] + x[P_{n-1}(-x^2) + x^2Q_{n-1}(-x^2)]. \]

Hence,

\[(2) \quad P_{n+1}(x) = P_n(x^2) + xP_n(-x^2). \]

The formula for \(Q_{n+1}(x) \) is established in a similar manner. \[\]

3. We now turn to an investigation of the coefficients of \(P_n(x). \) (The corresponding results can be obtained for \(Q_n(x) \) through the use of Theorem 1.)

It is clear from (1) that \(P_n(x) \) has coefficients \(\pm 1, \) without gaps, and that the first \(2^n \) coefficients of \(P_{n+1}(x) \) are identical with those of \(P_n(x). \) It follows then that these coefficients do not depend on \(n, \) so we can write \(P_n(x) = \sum_{r=0}^{2^n-1} a(r)x^r, \quad n \geq 0. \) (We may, of course, also consider \(P_n(x) \) as the first \(2^n \) terms of the infinite series \(P_\infty(x) = \sum_{r=0}^{\infty} a(r)x^r. \))

We will now derive an explicit formula for \(a(r). \)

Theorem 4. If we write \(n = r_0 + r_1 \cdot 2 + r_2 \cdot 2^2 + \cdots + r_k \cdot 2^k, \quad k \geq 0, \) \(r_i = 0 \) or 1, then
(3) \[a(r) = (-1)^{r_1+2r_2+\cdots+kr_{k-1}}. \]

Proof. We observe in (2) that the even and odd degree terms on the right side are separated, which allows us to equate coefficients, obtaining the relations \(a(2r) = a(r) \) and \(a(2r+1) = (-1)^*a(r) \). If we write \(a(r) = (-1)^e(r) \), then

(4) \[e(2r) \equiv e(r) \quad \text{and} \quad e(2r+1) \equiv r + e(r) \pmod{2}. \]

Proceeding by induction on \(k \), we verify for \(k=0 \) that \(1 = a(r_0) = (-1)^0 \), where \(r_0 = 0 \) or 1. Assume next that \(e(r) = r_1r_2 + r_2r_3 + \cdots + r_{k-1}r_k \) for any \(r = r_1 + r_2 \cdot 2 + \cdots + r_k \cdot 2^{k-1} \) of \(k \) digits. Consider the number \(2r + r_0 \), where \(r_0 = 0 \) or 1. Then using (4) \(e(2r+r_0) = r_0 + e(r) \equiv r_0r_1 + e(r) = r_0r_1 + r_1r_2 + \cdots + r_{k-1}r_k \pmod{2} \). (Note the particular case \(a(2^t) = 1 \).)

4. We next consider the problem of evaluating \(P_n(x) \) at certain points on the unit circle. We begin with

Theorem 5.

\[
\begin{align*}
P_{2n}(1) &= 2^n, & P_{2n+1}(1) &= 2^{n+1}, & n \geq 0. \\
P_{2n}(-1) &= 2^n, & P_{2n+1}(-1) &= 0, & n \geq 0.
\end{align*}
\]

Proof. Let \(\theta(n) \) be the number of \(a(r) \) in \(P_n(x) \) that are positive. In particular, let \(\theta_0(n) \) be the number of \(a(2r) \) and \(\theta_1(n) \) be the number of \(a(2r+1) \) in \(P_n(x) \) that are positive. Then certainly

(5) \[\theta(n) = \theta_0(n) + \theta_1(n). \]

Since the first term on the right side of (2) contains all the terms of even degree, we have

(6) \[\theta_0(n + 1) = \theta(n), \]

and hence by (5)

(7) \[\theta_0(n + 1) = \theta_0(n) + \theta_1(n) . \]

Also, since the second term on the right side of (2) can be written as \(\sum_{r=0}^{2^n-1} (-1)^r a(r)x^{2r+1} \), we find that

\[\theta_1(n + 1) = \theta_0(n) + [2^{n-1} - \theta_1(n)]. \]

Adding this equation to (7), and using (5), we obtain

\[\theta(n + 1) = \theta_0(n + 1) + \theta_1(n + 1) = 2\theta_0(n) + 2^{n-1} . \]

Finally, from (6) we derive the recursion relation
\[\theta(n + 1) = 2\theta(n - 1) + 2^{n-1}. \]

With the initial conditions \(\theta(0) = 1 \), and \(\theta(1) = 2 \), the solution is readily found to be

(8) \[\theta(2n) = 2^{2n-1} + 2^{n-1}, \quad \theta(2n + 1) = 2^{2n} + 2^{n}, \quad n \geq 0. \]

From the equation \(P_n(1) = \theta(n) - [2^n - \theta(n)] = 2\theta(n) - 2^n \), we conclude that \(P_{2n}(1) = 2^n \) and \(P_{2n+1}(1) = 2^{n+1} \). If we now set \(x = 1 \) in (2), we have \(P_n(-1) = P_{n+1}(1) - P_n(1) \), whence \(P_{2n}(-1) = 2^n \) and \(P_{2n+1}(-1) = 0 \). \[\Box \]

With a knowledge of \(P_n(\pm 1) \), we are in a position to find the values at \(x = e^{i\pi/2} \). For example, setting \(x = i \) in (2), we obtain \(P_{n+1}(i) = P_n(-1) + iP_n(1) \), whence \(P_{2n}(i) = i\cdot2^n \) and \(P_{2n+1}(i) = (1+i)2^n \). The values at \(x = -i \) are found by conjugating.

Remark. It can readily be shown by repeated use of (2) that the series \(P_\infty(x) \) diverges at the dense set of points \(\exp(2\pi ri/2^s) \) on the unit circle.

The authors would like to thank Michael Garvey for his suggestions on parts of the paper.

References