The Toeplitz-Hausdorff theorem for linear operators
HTML articles powered by AMS MathViewer
- by Karl Gustafson
- Proc. Amer. Math. Soc. 25 (1970), 203-204
- DOI: https://doi.org/10.1090/S0002-9939-1970-0262849-9
- PDF | Request permission
References
- Otto Toeplitz, Das algebraische Analogon zu einem Satze von Fejér, Math. Z. 2 (1918), no. 1-2, 187–197 (German). MR 1544315, DOI 10.1007/BF01212904
- Felix Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), no. 1, 314–316 (German). MR 1544350, DOI 10.1007/BF01292610
- Marshall Harvey Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications, vol. 15, American Mathematical Society, Providence, RI, 1990. Reprint of the 1932 original. MR 1451877, DOI 10.1090/coll/015
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- William F. Donoghue Jr., On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261–263. MR 96127
- R. Raghavendran, Toeplitz-Hausdorff theorem on numerical ranges, Proc. Amer. Math. Soc. 20 (1969), 284–285. MR 233186, DOI 10.1090/S0002-9939-1969-0233186-5 K. Gustafson, A min-max theorem, Notices Amer. Math. Soc. 15 (1968), 799. Abstract #68T-B38.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 203-204
- MSC: Primary 47.10; Secondary 46.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0262849-9
- MathSciNet review: 0262849