ON l-l SUMMABILITY

B. WOOD

1. Introduction. Let (E, p_i) and (F, q_j) be Fréchet spaces, i.e., locally convex Hausdorff spaces which are metrisable and complete, whose topologies are generated, respectively, by the countable collections $\{p_i\}$ and $\{q_j\}$ of seminorms. Let the infinite matrix $A = (A_{nk})$ consist of entries A_{nk} each of which is a continuous linear operator of E into F. Given a sequence $\{x_k\}$ in E we (formally) define a sequence $\{y_n\}$ by

$$y_n = \sum_{k=0}^{\infty} A_{nk}x_k, \quad n = 0, 1, 2, \ldots.$$

We say the matrix A is an l-l method if each series (1.1) converges in (F, q_j) and

$$\sum_{n=0}^{\infty} q_j(y_n) < +\infty, \quad j = 1, 2, \ldots,$$

whenever

$$\sum_{k=0}^{\infty} p_i(x_k) < +\infty, \quad i = 1, 2, \ldots.$$

We say the method A is absolutely L-regular if in addition $\sum_{n=0}^{\infty} y_n = \sum_{k=0}^{\infty} L(x_k)$ whenever $\sum_{k=0}^{\infty} p_i(x_k) < +\infty, \ i = 1, 2, \ldots$. Here L is a prescribed continuous linear operator of E into F. It is the purpose of this note to establish necessary and sufficient conditions which ensure that A be l-l or absolutely L-regular. For the classical case $(E, F$ the complex numbers with the usual topology) these conditions were given by Mears [3] and Knopp and Lorentz [1] and for the Banach space setting by Lorentz and Macphail [2].

2. Theorems.

Theorem 2.1. The matrix $A = (A_{nk})$ defining series to series transformations from the F-space (E, p_i) into the F-space (F, q_j) is l-l if and only if

$$(2.1) \text{for each bounded set } M_a \text{ in } E \text{ and for each fixed } j,$$

$$\sum_{n=0}^{m} q_j(A_{nv}(x_v)) \leq K_{a,j} \quad \text{for } m, v = 0, 1, 2, \ldots$$

Received by the editors June 20, 1969.
and $x_v \in M_\alpha$, $v = 0, 1, 2, \cdots$.

The proof of Theorem 2.1 requires the following lemmas. Lemma 2.2 is known [4], while Lemma 2.3 is a minor modification of Lemma 2.4 of [5].

Lemma 2.2. If E and F are locally convex spaces and E is quasicomplete then any collection of continuous linear operators from E into F which is simply bounded is bounded for the topology of uniform convergence on bounded sets.

Lemma 2.3. If $\sum_{k=0}^{\infty} A_{nk} x_k$ converges in F for every sequence $\{x_k\}$ in E such that $\sum_{k=0}^{\infty} p_i(x_k)$ converges ($i = 1, 2, \cdots$), then the sequence $\{A_{nk}\}$, $k = 0, 1, \cdots$, of continuous linear operators from E into F is bounded (for fixed n) for the topology of uniform convergence on bounded sets.

Proof of Theorem 2.1. Assume $A = (A_{nk})$ is l-l and consider the linear space E_1 of sequences $\{x_k\}$ in E such that $\sum_{k=0}^{\infty} p_i(x_k) < + \infty$ ($i = 1, 2, \cdots$). For $x = \{x_k\}$ in E_1 define $P_i(x) = \sum_{k=0}^{\infty} p_i(x_k)$. Then, for each i, P_i is a seminorm on E_1 and the locally convex space (E_1, P_i) is complete. Now, since $A = (A_{nk})$ is l-l, each series $\sum_{k=0}^{\infty} A_{nk}(x_k)$ converges in (F, q_j) whenever $\sum_{k=0}^{\infty} p_i(x_k) < + \infty$, $\{x_k\}$ in E. It follows from Lemma 2.3 that $\{A_{nk}\}$, $k = 0, 1, \cdots$, is bounded for the topology of uniform convergence on bounded sets. We shall show that this implies

(2.2) for each $n = 0, 1, 2, \cdots$, $i = 1, 2, \cdots$ and $j = 1, 2, \cdots$, there exists a number $K_{n,j,i} \geq 0$ such that $q_j(A_{nk}(x)) \leq K_{n,j,i}p_i(x)$, $x \in E$, $k = 0, 1, 2, \cdots$.

For each $k = 0, 1, \cdots$ and fixed i, j, n, define $\mu_k(x) = q_j(A_{nk}(x))$, $x \in E$. Then μ_k is a seminorm on E. It follows from the fact that $\{A_{nk}\}$ ($k = 0, 1, \cdots$) is bounded for the topology of uniform convergence on bounded sets that there exists a number, $K_{n,j,i} \geq 0$, such that $p_i(x) < 1$ and $k = 0, 1, \cdots$ imply $\mu_k(x) \leq K_{n,j,i}$. If $K_{n,j,i} > 0$ it is easy to see that (2.2) holds. On the other hand, if $K_{n,j,i} = 0$ (2.2) follows from elementary properties of seminorms (see, e.g., the proof of Theorem 2.1 in [5]). Thus for each fixed $n = 0, 1, \cdots$ the linear operator T_n defined by $T_n(x) = \sum_{k=0}^{\infty} A_{nk}(x_k)$, $x = \{x_k\} \in E_1$, is in $L(E_1, F)$, i.e., T_n is a continuous linear operator from E_1 into F. Let F_1 denote the linear space of sequences $\{y_k\}$ in F such that $\sum_{k=0}^{\infty} q_j(x_k) < + \infty$. For $y = \{y_k\} \in F_1$ define $Q_j(y) = \sum_{k=0}^{\infty} q_j(y_k)$. Then (F_1, Q_j) is a locally convex complete seminormed space. Define the operators U_m, $m = 0, 1, \cdots$, by $U_m(x) = \{y_n\}$ where
\[y_n = T_n(x), \quad n = 0, 1, \ldots, m, \]
\[= 0, \quad n > m, \]
and \(x \in E_1 \). Thus \(U_m \in L(E_1, F_1), \ m = 0, 1, \ldots \). Since \(A \) is \(l-l \), \(\{ U_m(x) \} \) converges in \((F_1, Q_j) \) whenever \(x \in E_1 \). It now follows from Lemma 2.2 that \(U_m, \ m = 0, 1, \ldots \), is bounded for bounded convergence on \(L(E_1, F_1) \). Therefore, for each fixed \(j \) and each bounded set \(M \) in \(E_1 \)
\[
\sup_{x \in M} Q_j(U_m(x)) \leq K_{M,j}, \quad m = 0, 1, \ldots.
\]
Consider a bounded set \(M_a \) in \(E \). Say \(M_a \) consists of points \(x \) such that \(p_i(x) < \alpha_i \). Consider sequences of the form \(\{x_0, 0, 0, \ldots \} \), \(\{0, x_1, 0, \ldots \} \), \(\{0, 0, x_20, \ldots \} \) \ldots, where the \(x_i \)'s are in \(M_a \). All such sequences are in the same bounded set \(U_a \) of \((E_1, P_i) \). Therefore,
\[
Q_j(U_m(x)) = Q_j(\{T_0(x), T_1(x), \ldots, T_m(x), 0, 0, 0, \ldots\})
\]
\[
= \sum_{n=0}^{m} q_j(T_n(x)) = \sum_{n=0}^{m} q_j(A_{nv}(x_v))
\]
\[
\leq K_{m_a,j} = K_{a,j},
\]
for \(m, v = 0, 1, 2, \ldots \) and \(x_v \in M_a \) for each \(v \), i.e., (2.1) holds.

Conversely, suppose (2.1) is true. Let \(x = x_k \in E_1 \). Then \(x_k \in (\text{same}) \) bounded set \(M_a \) in \(E \) for \(k = 0, 1, \ldots \). For each \(j \) and each \(n = 0, 1, \ldots \), we claim that
\[
\sum_{k=0}^{\infty} q_j(A_{nk}(x_k)) < +\infty.
\]
For, by (2.1), given \(j \) there exists \(K_{a,j} \geq 0 \) such that \(q_j(A_{nk}(x_k)) \leq K_{a,j}, n, k = 0, 1, \ldots \). It now follows, as in the first part of the proof, that there exists a number \(R = R(n, j, i) \) such that \(q_j(A_{nk}(x_k)) \leq Rp_i(x_k) \) for \(k = 0, 1, \ldots \). Thus (2.3) is valid.

Since
\[
y_m = \sum_{n=0}^{m} q_j \left(\sum_{k=0}^{\infty} A_{nk}(x_k) \right)
\]
is a nondecreasing sequence of nonnegative numbers, it suffices to show that \(\{y_m\} \) is bounded above in order to conclude that \(A \) is \(l-l \). For a given \(j \), \(x \in E \) and \(v = 0, 1, \ldots \), define
\[
S_j(x) = \sum_{n=0}^{\infty} q_j(A_{nv}(x)).
\]
It follows, using (2.1), that S_j is a seminorm on E. Property (2.1) now implies, as before, the existence of a number $T \geq 0$, where T depends on j, i but is independent of n and v ($n, v = 0, 1, \ldots$), such that $S_j(x) \leq Tp_i(x)$ for $x \in E$. Using (2.3) we obtain easily that $\{y_m\}$ is bounded above and the proof is complete.

Under (2.1) we have

$$\lim_{m} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} A_{nk}(x_k) = \lim_{m} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} A_{nk}(x_k) = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} A_{nk}(x_k).$$

The following theorem is now obvious.

Theorem 2.4. The method $A = (A_{nk})$, considered as an $l-l$ method, is absolutely L-regular if and only if (2.1) holds and also

$$\lim_{m} \sum_{n=0}^{m} A_{nk}(x_k) = L(x_k), \quad k = 0, 1, \ldots,$$

for $\{x_k\} \in E_i$.

References

University of Arizona, Tucson, Arizona 85721