SYMMETRY OF GENERALIZED GROUP ALGEBRAS

KJELD B. LAURSEN

In this note we shall consider the generalized group algebras $B^p(G, A)$, where G is a compact Hausdorff group, A a Banach-* algebra, and $1 \leq p < \infty$. These spaces have been studied by Spicer [6] and [7] and are defined as the spaces of functions $f: G \to A$ for which

$$\left[\int |f(g)|^p dm(g) \right]^{1/p} < \infty.$$

$B^p(G, A)$ is normed by defining

$$|f|_p = \left[\int |f(g)|^p dm(g) \right]^{1/p}$$

and involution is defined as usual: $f^*(g) = f(g^{-1})^*$. We prove the following

Theorem. If G is a compact group and A is a Banach algebra with (continuous) involution, then $B^p(G, A)$ is symmetric if and only if A is symmetric.

A Banach-* algebra is symmetric if elements $f^* f$ have nonnegative spectrum. This is the case if and only if hermitian elements have real spectra [5].

We first observe that it suffices to show that A is symmetric iff $B^1(G, A)$ is symmetric, because $B^1(G, A)$ symmetric $\Rightarrow B^p(G, A)$ symmetric for any p, $1 \leq p < \infty$, $\Rightarrow A$ symmetric $\Rightarrow B^1(G, A)$ symmetric. The proof of the first of these implications will be accomplished by showing that if $t \in B^p(G, A) \subseteq B^1(G, A)$ then the spectrum of t in $B^p(G, A)$, $\sigma_p(t)$ equals the spectrum of t in $B^1(G, A)$, $\sigma_1(t)$. Since $B^p(G, A) \subseteq B^1(G, A)$, clearly $\sigma_1(t) \subseteq \sigma_p(t)$. On the other hand, $B^p(G, A)$ is an ideal in $B^1(G, A)$ [6]. Recall that $0 \neq \lambda \in \sigma_1(t)$ iff t/λ has a quasi-inverse, y_λ, say, in $B^1(G, A)$ [4, p. 28]. t/λ and y_λ satisfy the relationship

$$t/\lambda + y_\lambda - (t/\lambda) * y_\lambda = 0$$

or

$$y_\lambda = (t/\lambda) * y_\lambda - t/\lambda.$$

Using the fact that $B^p(G, A)$ is an ideal in $B^1(G, A)$ we conclude

Received by the editors June 4, 1969.

318
that \(y_{\lambda} \in B^p(G, A) \) i.e. \(\lambda \in \sigma_p(t) \). If neither \(B^p(G, A) \) nor \(B^1(G, A) \) contains an identity \(0 \in \sigma_1(t) \) and \(0 \in \sigma_p(t) \). On the other hand, if \(G \) is a finite group, then obviously \(t \in B^p(G, A) \) has an inverse in \(B^p(G, A) \) if and only if \(t \) has an inverse in \(B^1(G, A) \), because \(B^1(G, A) = B^p(G, A) \) setwise. Consequently, we have shown

Lemma 1. \(\sigma_1(t) = \sigma_p(t) \) for all \(t \in B^p(G, A) \) and any \(p, 1 \leq p < \infty \).

From this lemma it follows that if \(B^1(G, A) \) is symmetric and \(t \in B^p(G, A) \), then \(-1 \in \sigma_1(t^*t) \) and therefore \(-1 \in \sigma_p(t^*t) \). This shows that \(-t^*t \) is quasi-regular in \(B^p(G, A) \) for any \(t \in B^p(G, A) \); therefore \(B^p(G, A) \) is symmetric if \(B^1(G, A) \) is symmetric.

Next we prove the second implication. Suppose \(B^p(G, A) \) is symmetric. We show that \(A \) is symmetric. Simply embed \(A \) in \(B^p(G, A) \) by considering the isometric image of \(A \) in \(B^p(G, A) \). This identification shows immediately that if \(B^p(G, A) \) is symmetric, then \(A \) is symmetric.

To show that \(B^1(G, A) \) is symmetric, provided that \(A \) is, is somewhat more complicated. The proof given here depends on the minimal ideal structure of \(L^1(G) \) via the identification \(B^1(G, A) = L^1(G) \otimes_A \) \([6]\), based on a result by Grothendieck \([1, p. 59]\). We present the proof as a sequence of lemmas.

The first two of these are proved in \([7]\).

Lemma 2. Let \(X_1 \) be a finite-dimensional Banach space and \(X_2 \) be any Banach space. Let \(\{l_1, \cdots, l_n\} \) be any basis of unit vectors for \(X_1 \); if \(t \in X_1 \otimes X_2 \) then \(t \) has a unique representative \(t = \sum_{i=1}^n l_i \otimes y_i \). Define

\[
\phi: X_1 \otimes X_2 \to \sum \oplus_n X_2 \quad \text{by} \quad \phi(t) = (y_1, \cdots, y_n).
\]

\(\phi \) is an algebraic isomorphism onto.

Lemma 3. \(X_1 \) and \(X_2 \) as in Lemma 2. If we norm \(\sum \oplus_n X_2 \) by defining

\[
| (y_1, \cdots, y_n) | = \sum_{i=1}^n | y_i |,
\]

then \(\phi \) as defined above is a homeomorphism of \(\sum \oplus_n X_2 \) and \(X_1 \otimes \gamma X_2 \).

Note that since \(X_1 \) is finite-dimensional the algebraic tensor product normed with the greatest cross norm is complete.

Lemma 4. Suppose \(X_1 \) is a simple finite-dimensional annihilator algebra with proper involution (see \([4]\)) and continuous quasi-inversion. Suppose \(X_2 \) is a Banach-\(\ast \)-algebra. Then \(\phi \) defined in Lemma 2 is a \(\ast \)-algebra-isomorphism.
Proof. The assumptions on X_1 are made simply to ensure that X_1 has a basis $\{e_i\}$ consisting of orthonormal, hermitian idempotents [3, p. 330], i.e. $\{e_i\}$ satisfies
\[e_i e_j = \delta_{ij} e_j, \quad \text{for all } i, j = 1, \ldots, n, \]
and
\[e_i^* = e_i, \quad \text{for all } i = 1, \ldots, n. \]
If $t \in X_1 \otimes \gamma X_2$ then as before $t = \sum e_i \otimes y_i$ and $\phi(t) = (y_1, \ldots, y_n)$. Hence $t^* = \sum e_i^* \otimes y_i^* = \sum e_i \otimes y_i^*$ and $\phi(t^*) = (y_1^*, \ldots, y_n^*) = [\phi(t)]^*$. Moreover, if $t_1 = \sum e_i \otimes x_i$ and $t_2 = \sum e_j \otimes y_j$ then
\[t_1 t_2 = \sum_{ij} e_i e_j \otimes x_i y_j = \sum_i e_i \otimes x_i y_i \]
so that
\[\phi(t_1 t_2) = (x_1 y_1, \ldots, x_n y_n) = (x_1, \ldots, x_n) (y_1, \ldots, y_n) = \phi(t_1) \phi(t_2). \]

Corollary 1. X_1 and X_2 as in Lemma 4. $X_1 \otimes \gamma X_2$ is symmetric if and only if X_2 is symmetric.

Remark. The assumptions about X_1 imply that X_1 is symmetric [4, p. 266].

Proof. By Lemma 3 and Lemma 4 it suffices to show that $\sum_n \oplus X_2$ is symmetric iff X_2 is symmetric. But this is an immediate consequence of the fact that
\[\sigma(y_1, \ldots, y_n) = \bigcup_{i=1}^n \sigma(y_i) \]
for any $(y_1, \ldots, y_n) \in \sum_n \oplus X_2$.

We now specialize to $B^1(G, A) = L^1(G) \otimes \gamma A$. The theory to be developed depends on the minimal ideal structure of $L^1(G)$.

If $S \subseteq L^1(G)$ then $(S \otimes A)_\gamma$ will denote the γ-closure of $S \otimes A$ in $L^1(G) \otimes \gamma A$.

Lemma 5. If $M \subseteq L^1(G)$ is a minimal two-sided closed ideal, then $(M \otimes A)_\gamma$ is a closed ideal in $B^1(G, A)$, symmetric if and only if A is symmetric.

Proof. Since G is compact, M is a finite-dimensional simple annihilator algebra with proper involution and continuous quasi-inversion [3, VI]. Clearly $(M \otimes A)_\gamma$ is a closed ideal; if $t_1 = \sum_{i=1}^n x_i \otimes y_i \in M \otimes A$ and
Let \(t_2 = \sum_{j=1}^{\infty} u_j \otimes v_j \in L^1(G) \otimes_\gamma A \)

then

\[
t_1 t_2 = \sum_{i,j} x_i u_j \otimes y_i v_j \in (M \otimes A)_\gamma.
\]

Similarly \(t_2 t_1 \in (M \otimes A)_\gamma \). It is easy to see that \(M \otimes_\gamma A \) and \((M \otimes A)_\gamma \) are *-isomorphic, using the technique of Lemma 2. Since \(M \otimes_\gamma A \) is symmetric iff \(A \) is symmetric, the conclusion follows by the above and Lemma 4.

Lemma 6. Let \(\{ M_i \}_{i=1}^n \) be minimal two-sided ideals of \(L^1(G) \); if \(A \) is symmetric, then \(\sum_{i=1}^{n} \bigoplus (M_i \otimes A)_\gamma \subset B^1(G, A) \) is symmetric.

Proof. If \(A \) is symmetric, then \((M_i \otimes A)_\gamma \) is symmetric (Lemma 5). The rest follows as in the proof of Corollary 1.

Now we are able to complete the proof of the theorem. Suppose \(A \) is symmetric. We must show that \(B^1(G, A) \) is symmetric; from this it will follow that \(B^n(G, A) \) is symmetric (Lemma 1). In accordance with [5] we show that hermitian elements in \(B^1(G, A) \) have real spectra. Adapting a construction in [2, Theorem (28.53)] to the present situation we can find a net of functions \(\{ u_\alpha \} \) with the following properties:

(i) each \(u_\alpha \) is complex-valued continuous, nonnegative, positive-definite and central.

(ii) \(\int u_\alpha dm = 1 \) for all \(\alpha \).

(iii) \(u_\alpha * f = f * u_\alpha \) for any \(f \in L^1(G) \).

Clearly each \(u_\alpha \) generates an operator \(T_\alpha \) in \(B^1(G, A) \) defined as follows

\[
f = \sum x_i \otimes y_i \in B^1(G, A) = L^1(G) \otimes_\gamma A \Rightarrow \]

\[
T_\alpha f = \sum u_\alpha * x_i \otimes y_i.
\]

Equally clear is it that \(T_\alpha \) approximates the identity of \(B^1(G, A) \), i.e.

\[
\sum u_\alpha * x_i \otimes y_i \to \sum x_i \otimes y_i.
\]

Now, let \(f \) be a hermitian element of \(B^1(G, A) \). We will use the notation \(u_\alpha * f \) for \(T_\alpha f \in B^1(G, A) \). From \(\{ u_\alpha * f \} \) we can pick a sequence \(\{ u_n * f \} \) such that

\[
| u_n * f - f | < 1/n, \quad n = 1, 2, \ldots.
\]

Let \(\mathcal{F} = \{ M \} \) be the collection of minimal two-sided ideals in \(L^1(G) \). Since \(G \) is compact any irreducible representation of \(L^1(G) \) is
realizable as left translation in some $M \subseteq \mathfrak{F}$ [3, p. 434]. Moreover, each u_n being positive definite we have that

$$u_n(\cdot) = \sum_{M \in \mathfrak{F}} c_n(M) \chi_M(\cdot)$$

where χ_M is the character of M, where $c_n(M) \geq 0$ and where $\sum_{M \in \mathfrak{F}} c_n(M) \chi_M(e) < \infty$. Again following [2], for each u_n we can choose a finite partial sum, u'_n, of the series for u_n so that $|u'_n - u_n|_\infty < 1/2n$. Setting $u''_n = \frac{1}{2}(u'_n + u'_n^*)$ we get a continuous hermitian central trigonometric polynomial for which $|u''_n - u_n|_\infty < 1/n$. If we normalize u''_n to obtain v_n, i.e.

$$v_n = u''_n / |u''_n|_1, \quad n = 1, \ldots,$$

then it is clear that $v_n \ast f = f$. Since $v_n \ast f = f \ast v_n$ each $v_n \ast f$ is hermitian. Also since $v_n \ast f$ and f commute we can make use of [4, (1.6.17)]. Consequently, it suffices to show that $v_n \ast f$ has a real spectrum. But since v_n is a finite linear combination of characters it follows that

$$v_n \ast f \in \sum_{i \in K} \oplus (M_i \otimes A)_\gamma$$

where K is finite set. Lemma 6 then implies that $v_n \ast f$ has real spectrum. This completes the proof.

Corollary. Let G be a compact group and H a locally compact group. $L^1(G \times H)$ is symmetric if and only if $L^1(H)$ is symmetric.

Bibliography

University of Aarhus, Aarhus, Denmark