A CLASS OF UNIFORM CONVERGENCE STRUCTURES

G. D. RICHARDSON

Abstract. In 1967, Cook and Fischer introduced in the journal Mathematische Annalen the notion of a uniform convergence structure, abbreviated u.c.s., for a set X. Here we consider the class Γ of u.c.s. which have the following property: a u.c.s. I ∈ Γ provided there is a filter Φ ∈ I such that Φ is finer than Φ(x) for every filter F which converges to x, for each x ∈ X. Various properties of the class Γ are discussed. The main result is that a topology τ for X is regular if and only if there is an I ∈ Γ such that I induces τ. Also it is shown that each I ∈ Γ induces a regular topology for X.

The class Γ₀ of u.c.s. which satisfy the completion axiom was first introduced by Biesterfeldt, Indag. Math., 1966. Here it is shown that Γ₀ ⊆ Γ and a characterization of the class Γ₀ is given in terms of Cauchy filters.

Let X be any set. Denote by Γ, the class of all uniform convergence structures, abbreviated u.c.s., for X with the following property: for each I ∈ Γ there is a Φ ∈ I such that τ_I(x) is the collection of all filters on X which are finer than Φ(x), for each x ∈ X.

Various properties of the class Γ are discussed. The main result is that any topology for X is regular if and only if there is a u.c.s. in Γ that induces the given topology.

Finally the u.c.s. for X which satisfy the completion axiom are discussed. The completion axiom was first introduced in [1].

2. A characterization for regular topologies. Let I ∈ Γ. Then there is a symmetric filter Φ ∈ I with Φ ≤ [Δ] (Φ coarser than the diagonal filter) such that τ_I(x) is the collection of all filters on X which are finer than Φ(x).

Proposition 1. Let I ∈ Γ. Then τ_I is a topology for X.

Proof. From [2], we must show that for A(x) ∈ Φ(x), A = A⁻¹ ∈ Φ, there is an H ∈ Φ(x) such that for each y ∈ H, A(x) ∈ Φ(y). Since Φ²(x) converges to x, we have that Φ²(x) = Φ(x). Hence there is a B ∈ Φ such that B²(x) ⊆ A(x). Let H = B(x) ∈ Φ(x) and let y ∈ H. We claim that A(x) ⊆ B(y) ∈ Φ(y). If z ∈ B(y), then (y, z) ∈ B. Since y ∈ B(x), then (x, y) ∈ B and it follows that (x, z) ∈ B² or z ∈ B²(x) ⊆ A(x).

Received by the editors September 9, 1969.
AMS Subject Classifications. Primary 5422, 5410; Secondary 5420.
Key Words and Phrases. Uniform convergence structures, symmetric filters, diagonal filters, ultrafilters, Cauchy filters, regular topologies.

399
Hence the claim follows and thus τ_I is a topology for X.

The proof of the following proposition is similar to that in [2] for uniform spaces and will be deleted here.

Proposition 2. Let $I \in \Gamma$ and $A \subset X$, $B \subset X \times X$. Then $\text{Cl}(A) = \bigcap_{V \in \Phi} V(A)$ and $\text{Cl}(B) = \bigcap_{V \in \Phi} V \circ B \circ V$.

Corollary. If $I \in \Gamma$, then $\text{Cl}(\Phi) \supseteq \Phi^3$ and hence $\text{Cl}(\Phi) \in I$.

Proposition 3. If $I \in \Gamma$, then τ_I is a regular topology.

Proof. We claim that $x \times \text{Cl}(\Phi(x)) \supseteq \text{Cl}(\Phi) \in I$ (x is a fixed ultra-filter); of course, it suffices to show that $\{x\} \times \text{Cl}(A(x)) \subset \text{Cl}(A)$ where $A \in \Phi$. If $y \in \text{Cl}(A(x))$ and $B \in \Phi$, then $(B(x) \times B(y)) \cap A \neq \emptyset$.

Hence $(x, y) \in \text{Cl}(A)$ and the claim follows. Therefore τ_I is a regular topology.

Theorem. Let (X, τ) be a topological space with $\eta(x)$ denoting the neighborhood filter at $x \in X$. Then τ is regular iff there is an $I \in \Gamma$ inducing τ.

Proof. Let $I \in \Gamma$ such that $\tau_I = \tau$. Then by Proposition 3, τ is regular.

Conversely, assume that τ is a regular topology. Denote by $\Psi_0 = \bigvee_{x \in X} \{x \times \eta(z)\}$, $\Phi = \Psi_0 \setminus \Psi_0^{-1}$, $F(X \times X)$ the collection of all filters on $X \times X$, and $B = \{\Phi^n | n = 1, 2, \cdots \}$. Clearly B is a base for a u.c.s. I for X. That is, $I = \{\Psi \in F(X \times X) | \Psi \supseteq \Phi^n \text{ for some } n = 1, 2, \cdots \}$ is a u.c.s. for X.

We claim that $\tau_I = \tau$. The regularity of τ implies property (3) of Theorem 1 of [5]. Hence from property (2) of the same theorem, we have that $\Phi(x) = \eta(x)$ for each $x \in X$. Thus $x \times \eta(x) = x \times \Phi(x) \supseteq \Phi$ and hence $\tau(x) \subset \tau_I(x)$.

Conversely, if $\tau \in \tau_I(x)$, then $x \times \tau \supseteq \Phi^n$ for some positive integer n. Hence $\tau = (x \times \tau)(x) \supseteq \Phi^n(x)$. Thus we must show that $\Phi^n(x) \supseteq \eta(x)$. Assume $n \geq 2$. Let $N \in \eta(x)$ be open. Using the regularity of τ, there exists open neighborhoods $N_i \in \eta(x)$ ($i = 1, 2, \cdots, n$) such that $x \in \bigcap_{i=1}^{N_1} \subset \text{Cl}(N_1) \subset N_2 \subset \text{Cl}(N_2) \subset \cdots \subset \text{Cl}(N_n) \subset N$. For each $z \in X$, define

$$N_z = \begin{cases} N_1 & \text{for } z \in N_1, \\ N_2 & \text{for } z \in \text{Cl}(N_1) - N_1, \\ N_{k+1} - \text{Cl}(N_k) & \text{for } z \in \text{Cl}(N_k) - N_k \quad (k = 2, 3, \cdots, n - 1), \\ N_{k+1} - \text{Cl}(N_k) & \text{for } z \in N_{k+1} - \text{Cl}(N_k) \quad (k = 1, 2, \cdots, n - 1), \\ N - \text{Cl}(N_{n-1}) & \text{for } z \in \text{Cl}(N_n) - N_n, \\ X - \text{Cl}(N_n) & \text{for } z \in X - \text{Cl}(N_n). \end{cases}$$
We claim that
\[
\left[\left(\bigcup_{x \in X} \langle \{z\} \times N_z \rangle \right) \bigcup \left(\bigcup_{x \in X} \langle \{z\} \times N_z \rangle \right)^{-1} \right]^{n}(x) \subseteq N.
\]

Let \(y \in \text{L.H.S.} \), \(z_0 = x \), \(z_n = y \), and \(A \) equal the set in brackets. Hence \((z_{i-1}, z_i) \in A \) for some \(z_i \in X \) \((i = 1, 2, \ldots, n)\). By computation, one can show that \(z_i \in N_{i+1} \) \((i = 1, 2, \ldots, n-1)\) and \(y \in \text{Cl}(N) \subseteq N \). Therefore our claim follows and we have that \(\Phi^n(x) = \eta(x) \) for each natural number \(n \) and each \(x \in X \). Thus \(\tau_I = \tau \).

Proposition 4. If \(\tau \) is a compact Hausdorff topology for \(X \), then there is exactly one \(I \in \Gamma \) inducing \(\tau \).

Proof. From \([2]\) we have that \(I = \{ \Phi \in F(X \times X) \mid \Phi \geq \mathcal{U} \} \), where \(\mathcal{U} = \{ \text{all neighborhoods of } \Delta \} \), induces \(\tau \). Of course \(I \in \Gamma \). Hence if \(I_1 \in \Gamma \) and induces \(\tau \), then we want to show that \(I = I_1 \).

Let \(\Phi_1 \in I_1 \) be a symmetric filter such that \(\tau(x) \) is the collection of all filters on \(X \) which are finer than \(\Phi_1(x) \). We claim that \(\mathcal{U} \geq \Phi_1 \circ \Phi_1 \). Let \(A_1 = \Phi_1^{-1}(\Phi) \). Since \(A_1(x) \times A_1(x) \subseteq A_1 \circ A_1 \) for each \(x \in X \), we have that \(\bigcup_{x \in X} (A_1(x) \times A_1(x)) \subseteq \mathcal{U} \) and is contained in \(A_1 \circ A_1 \). Hence the claim follows and thus \(I \subseteq I_1 \).

Conversely, we claim that \(\Phi_1 \geq \mathcal{U} \). Suppose there is a \(V \in \mathcal{U} \) such that for all \(A_1 \in \Phi_1 \), \(A_1 \cap V \neq \emptyset \). Assume w.l.o.g. that \(V \) is an open neighborhood of \(\Delta \). The set \(\{ A_1 \cap V \mid A_1 \in \Phi_1 \} \) is a base for a filter \(\mathcal{L} \) on \(X \times X \). Since \((X \times X, \tau \times \tau) \) is compact, \((x, y) \in \text{adh} (\mathcal{L}) \) for some \(x, y \in X \). Hence \((x, y) \in \text{Cl}(A_1 \cap V) \) for each \(A_1 \in \Phi_1 \). Thus \((x, y) \in \text{Cl}(V) = V \) and \((x, y) \in \text{Cl}(A_1) \) for each \(A_1 \in \Phi_1 \). Since \(\Delta \subseteq V \), \(x \neq y \). Also \(\text{Cl}(\Phi_1)(x) = \Phi_1(x) \) and we have that \(x \in \text{Cl}(\{y\}) \). This contradicts \(\tau \) being Hausdorff. Hence \(\Phi_1 \geq \mathcal{U} \) and thus \(\Phi_1 \in I \). Let \(\Psi \in I_1 \). Then of course \(\Psi \geq \Phi \). By an identical argument just given for \(\Phi_1 \), we have that \(\Psi \geq \Phi \) and thus \(I = I_1 \).

3. **Completion axiom.** The following definition is easily seen to be equivalent to that given in \([1]\). A u.c.s. \(I \) is said to satisfy the completion axiom, abbreviated c.a., provided there is a base for \(I \) consisting of symmetric filters coarser than the diagonal filter such that for each Cauchy filter \(\mathcal{F} \) on \(X \), \(\mathcal{F} \times \mathcal{F} \geq \Phi \) for every \(\Phi \) in the base.

Let \(I \) satisfy the c.a. with base \(B \).

Proposition 5. If \(I \) satisfies the c.a. and \(\Phi \in B \), then \(\tau_I(x) \) is the collection of all filters on \(X \) which are finer than \(\Phi(x) \).

Proof. Clearly \(\Phi(x) \in \tau_I(x) \). If \(\mathcal{F} \in \tau_I(x) \), then \(\mathcal{F} \times \mathcal{F} \subseteq \tau_I(x) \). Let \(A \in \Phi \). Since \(I \) satisfies the c.a., then \((\mathcal{F} \times \{x\}) \times (\mathcal{F} \times \{x\}) \subseteq A \) for
some $F \in \mathfrak{F}$. Hence $F \subseteq A(x)$, which implies that $\mathfrak{F} \supseteq \Phi(x)$ and thus the proposition follows.

Let Γ_0 denote the collection of u.c.s. for X which satisfy the c.a. From the above proposition $\Gamma_0 \subseteq \Gamma$. Hence each $I \in \Gamma_0$ induces on X a regular topology.

Let C_I denote the collection of all Cauchy filters on X [3].

Proposition 6. If I is any u.c.s. for X, then $I \in \Gamma_0$ iff $\bigwedge_{\mathfrak{F} \in \mathfrak{E}_f} (\mathfrak{F} \times \mathfrak{F}) \in I$.

Proof. Clearly the necessity follows. Conversely, if $\bigwedge_{\mathfrak{F} \in \mathfrak{E}_f} (\mathfrak{F} \times \mathfrak{F}) \in I$ then let $B = \{ \Phi \in I | \Phi = \Phi^{-1}, \bigwedge_{\mathfrak{F} \in \mathfrak{E}_f} (\mathfrak{F} \times \mathfrak{F}) \}$. Since $x \in C_I$ for each $x \in X$, then $\Phi \subseteq [\Delta]$ for each $\Phi \in B$. Clearly B is a c.a. base for I.

I conjecture that each $I \in \Gamma_0$ induces a completely regular topology on X.

References

EAST CAROLINA UNIVERSITY, GREENVILLE, NORTH CAROLINA 27834