A Stone-Čech compactification for limit spaces
HTML articles powered by AMS MathViewer
- by G. D. Richardson
- Proc. Amer. Math. Soc. 25 (1970), 403-404
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256336-1
- PDF | Request permission
Abstract:
O. Wyler [Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.] has given a Stone-Čech compactification for limit spaces. However, his is not necessarily an embedding. Here, it is shown that any Hausdorff limit space $(X,\tau )$ can be embedded as a dense subspace of a compact, Hausdorff, limit space $({X_1},{\tau _1})$ with the following property: any continuous function from $(X,\tau )$ into a compact, Hausdorff, regular limit space can be uniquely extended to a continuous function on $({X_1},{\tau _1})$.References
- N. Bourbaki, General topology. Part I, Hermann, Paris and Addision-Wesley, Reading, Mass., 1966. MR 34 #5044a.
- H. R. Fischer, Limesräume, Math. Ann. 137 (1959), 269–303 (German). MR 109339, DOI 10.1007/BF01360965 O. Wyler, The Stone-Čech compactification for limit spaces, Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 403-404
- MSC: Primary 54.22
- DOI: https://doi.org/10.1090/S0002-9939-1970-0256336-1
- MathSciNet review: 0256336