Tame boundary sets of crumpled cubes in $E^{3}$
HTML articles powered by AMS MathViewer
- by F. M. Lister
- Proc. Amer. Math. Soc. 25 (1970), 377-378
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257999-7
- PDF | Request permission
Abstract:
If a crumpled cube $K$ in ${E^3}$ is re-embedded by a homeomorphism $h$ such that $h(K)$ is tame from Ext $h(K)$ and $F$ is a tame closed subset of Bd $K$ which either has no degenerate components or consists entirely of degenerate components, then $h(F)$ is tame.References
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679
- J. W. Cannon, Characterization of taming sets on $2$-spheres, Trans. Amer. Math. Soc. 147 (1970), 289–299. MR 257996, DOI 10.1090/S0002-9947-1970-0257996-6
- Robert J. Daverman, A new proof for the Hosay-Lininger theorem about crumpled cubes, Proc. Amer. Math. Soc. 23 (1969), 52–54. MR 246274, DOI 10.1090/S0002-9939-1969-0246274-4 Norman Hosay, The sum of a real cube and a crumpled cube is ${S^3}$, Notices Amer. Math. Soc. 10 (1963), 668. Abstract #607-17.
- Lloyd L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534–549. MR 178460, DOI 10.1090/S0002-9947-1965-0178460-7
- F. M. Lister, Simplifying intersections of disks in Bing’s side approximation theorem, Pacific J. Math. 22 (1967), 281–295. MR 216484
- L. D. Loveland, Tame subsets of spheres in $E^{3}$, Pacific J. Math. 19 (1966), 489–517. MR 225309
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 377-378
- MSC: Primary 54.78; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257999-7
- MathSciNet review: 0257999