On extending homeomorphisms to Fréchet manifolds
HTML articles powered by AMS MathViewer
- by R. D. Anderson and John D. McCharen
- Proc. Amer. Math. Soc. 25 (1970), 283-289
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258064-5
- PDF | Request permission
Abstract:
Let $M$ be a Fréchet manifold and $K$ be a $Z$-set in $M$. It is shown that a homeomorphism $h$ of $K$ into $M$ can be isotopically extended to a homeomorphism of $M$ onto $M$ if and only if $h(K)$ is a $Z$-set and $h$ is homotopic to the identity in $M$. Conditions under which the isotopic extension can be required to be “close to” the homotopy are also given.References
- R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515–519. MR 190888, DOI 10.1090/S0002-9904-1966-11524-0
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041
- R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143–150. MR 246326
- R. D. Anderson and R. Schori, A factor theorem for Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 53–56. MR 233382, DOI 10.1090/S0002-9904-1969-12142-7
- T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137–146. MR 256418, DOI 10.1090/S0002-9947-1970-0256418-9
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759–762. MR 247634, DOI 10.1090/S0002-9904-1969-12276-7
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- James E. West, Approximating homotopies by isotopies in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 1254–1257. MR 248792, DOI 10.1090/S0002-9904-1969-12381-5
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 283-289
- MSC: Primary 57.55
- DOI: https://doi.org/10.1090/S0002-9939-1970-0258064-5
- MathSciNet review: 0258064