On the sum of two Borel sets
HTML articles powered by AMS MathViewer
- by P. Erdős and A. H. Stone
- Proc. Amer. Math. Soc. 25 (1970), 304-306
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260958-1
- PDF | Request permission
Acknowledgment: Proc. Amer. Math. Soc. 29, no. 3 (1971), p. 628.
Abstract:
It is shown that the linear sum of two Borel subsets of the real line need not be Borel, even if one of them is compact and the other is ${G_\delta }$. This result is extended to a fairly wide class of connected topological groups.References
- C. Kuratowski, Topologie. Vol. 1, 2nd ed., Monografie Mat., vol. 20, PWN, Warsaw, 1948; English transl., Academic Press, New York and PWN, Warsaw, 1966. MR 10, 389.
- Jan Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139–147. MR 173645, DOI 10.4064/fm-55-2-139-147
- J. v. Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), no. 1, 134–141 (German). MR 1512442, DOI 10.1007/BF01459089 C. A. Rogers, A linear Borel set whose difference set is not a Borel set, Bull. London Math. Soc. (to appear).
- L. A. Rubel, A pathological Lebesgue-measurable function, J. London Math. Soc. 38 (1963), 1–4. MR 147608, DOI 10.1112/jlms/s1-38.1.1
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 304-306
- MSC: Primary 28.10; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0260958-1
- MathSciNet review: 0260958