AN ANALOG OF THE LUSIN-PRIVALOFF RADIAL UNIQUENESS THEOREM

K. F. TSE

1. Let $D = \{ |z| < 1 \}$ and $C = \{ |z| = 1 \}$. For $0 \leq \theta < 2\pi$, and $-\pi/2 < \phi < \pi/2$, let $\rho(\theta) = \{ re^{i\theta} : 0 \leq r < 1 \}$ and $\rho(\theta, \phi) = \{ e^{i\theta}(1 - re^{i\phi}) : 0 < r \leq \cos \phi \}$. If $f(z)$ is a meromorphic function in D, and $G \subseteq D$ such that $e^{i\theta} \in \overline{G} \cap C$, then $C_\theta(f, e^{i\theta})$ represents the cluster set of $f(z)$ at $e^{i\theta}$ restricted in G. $F(f)$ will denote the set of Fatou points of $f(z)$ on C. (For a definition of Fatou points, see [6, p. 61].) Finally, a subset S of C is said to be metrically dense on an arc A of C if $\text{meas}(A' \cap S) > 0$ for each subarc A' of A.

Barth and Schneider have proved the following analog of the F. and M. Riesz uniqueness theorem for bounded holomorphic functions.

Theorem A [3, Theorem 1]. Let μ be a decreasing function on $[0, 1)$ such that $\lim_{r \to 1} \mu(r) = 0$, and let S be a subset of C of second category. If $f(z)$ is a bounded holomorphic function in D and $|f(re^{i\theta})| = o(\mu(r))$ for each $e^{i\theta}$ in S, then $f(z) \equiv 0$.

In Remark 4 of [3], the question whether the above theorem holds for holomorphic functions has been raised. We shall show that it even holds for meromorphic functions.

Theorem. Let μ and S be the same as stated in Theorem A. If $f(z)$ is a meromorphic function in D and $|f(re^{i\theta})| = o(\mu(r))$ for each $e^{i\theta}$ in S, then $f(z) \equiv 0$.

Before showing the proof, we wish to remark that our theorem is an analog of the Lusin-Privaloff uniqueness theorem which states:

If $f(z)$ is a holomorphic function in D and $\lim_{r \to 1} f(re^{i\theta}) = 0$ for each $e^{i\theta}$ in S, S being both metrically dense and of second category on an arc A of C, then $f(z) \equiv 0$.

2. To prove our theorem, we need two lemmas. The first one is very elementary in applying the notion of Baire categories. The second one is an extension of [4, Lemma 1].

Lemma. 1. Let S be a set of second category in an interval J, then there exists a subinterval I of J such that $S \cap I$ is both dense and of second category in I.

Received by the editors May 17, 1969 and, in revised form, June 28, 1969.
Proof. The existence of an interval in which S is of second category and of an interval in which S is dense are immediate consequences of the definition of "second category." We must prove the existence of an interval with both of these properties. By the remark following the proof of [5, Theorem 35, p. 201], there exists a non-empty closed subinterval I' of J such that the intersection of S with any neighborhood N of a point in I' is of second category in I'. Thus a subinterval I of I' in which S is dense has all the properties required.

Applying Lemma 1, it is easy to see that we can modify the proof of [4, Lemma 1, pp. 170–171] and obtain

Lemma 2. Suppose that $f(z)$ is a meromorphic function in D and that for some fixed ϕ, $-\pi/2 < \phi < \pi/2$, and some complex number β, finite or infinite, there exists a set S of second category on C and such that

$$\beta \in \bigcup_{e^{i\theta} \in S} C_{\rho(\theta)}(f, e^{i\theta}).$$

Then there exists an arc A on C such that

1. Either $f(z)$ or $1/(f(z) - \beta)$ is uniformly bounded in a relative neighborhood of A in D according as $\beta = \infty$ or $\beta \neq \infty$,
2. $A \cap S$ is dense in A, and
3. $A \cap S$ is of second category in A.

3. We now proceed to prove our theorem. Since $\lim_{r \to 1} \mu(r) = 0$ and $|f(re^{i\theta})| = o(\mu(r))$ for each $e^{i\theta}$ in S, we have

$$\infty \in \bigcup_{e^{i\theta} \in S} C_{\rho(\theta)}(f, e^{i\theta}).$$

Note that S is of second category. By Lemma 2, there exists an arc A of C such that $f(z)$ is uniformly bounded in a relative neighborhood of A in D and that $A \cap S$ is of second category in A.

On the other hand, by a theorem [2, p. 6] of Barth and Schneider, there exists a nonconstant holomorphic function $g(z)$ in D such that

$$\max_{0 \leq \theta < 2\pi} |g(re^{i\theta})| < 1/\mu(r) \quad \text{and} \quad \lim_{r \to 1} g(re^{i\theta}) = 0$$

for each $e^{i\theta}$ in T, where T is a subset of C of measure 2π. Now, consider the function $h(z) = f(z)g(z)$. Note that

$$\lim_{r \to 1} h(re^{i\theta}) = 0$$

for each $e^{i\theta}$ in $(S \cup T) \cap A$. Since $(S \cup T) \cap A$ is both metrically dense and of second category in A, $h(z)$ satisfies the hypotheses of [4, Theorem 1] and we have $h(z) \equiv 0$. Hence $f(z) \equiv 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
4. Gauthier (in a written communication to the author) has kindly pointed out that our theorem is sharp in the following sense:

Theorem B. Let μ be as in Theorem A and S be any set of first category on C. Then there exists a nonconstant holomorphic function $f(z)$ in D such that $|f(re^{i\theta})| = o(\mu(r))$ for each $e^{i\theta}$ in S.

Proof. Since S is of first category, $S = \bigcup_{n=1}^{\infty} S_n$, where S_n, for each $n = 1, 2, \ldots$, is nowhere dense on C. Thus $S' = \bigcup_{n=1}^{\infty} S_n$ is also of first category on C and $S \subseteq S'$. Consider the set

$$E' = \bigcup_{n=1}^{\infty} \{re^{i\theta} : e^{i\theta} \subseteq S_n, 1 - 1/2n \leq r < 1\}.$$

Choose θ_0 such that $e^{i\theta_0} \subseteq S'$ and let $E = E' \cup \rho(\theta_0)$. Note that E is relatively closed and nowhere dense in D. We define

$$\phi(z) = \begin{cases} 0, & z \in E', \\ 1, & z \in \rho(\theta_0). \end{cases}$$

$\phi(z)$ is continuous on E. Hence by a theorem of Arakeljan (see Arakeljan [1]), there exists a holomorphic function $f(z)$ in D such that $|f(z) - \phi(z)| \leq \mu(|z|)(1 - |z|)$ for each z in E. It follows that $|f(re^{i\theta})| = o(\mu(r))$ for each $e^{i\theta}$ in S' (note that $S \subseteq S'$), and $f(z) \neq 0$ because $f(z)$ is near to one on $\rho(\theta_0)$.

5. The author wishes to thank Dr. P. Gauthier for his kind permission to include Theorem B in this paper and Mr. P. S. Pun for a stimulating discussion.

References

Syracuse University, Syracuse, New York 13210