On a transformation of bilateral series with applications
HTML articles powered by AMS MathViewer
- by George E. Andrews
- Proc. Amer. Math. Soc. 25 (1970), 554-558
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257413-1
- PDF | Request permission
Abstract:
This paper is devoted to the study of a simple transformation of bilateral series. Formulae for basic bilateral hypergeometric series and generalizations of theorems on mock theta functions are proved.References
- R. P. Agarwal and Arun Verma, Generalized basic hypergeometric series with unconnected bases, Proc. Cambridge Philos. Soc. 63 (1967), 727–734. MR 212216, DOI 10.1017/s0305004100041724
- George E. Andrews, A simple proof of Jacobi’s triple product identity, Proc. Amer. Math. Soc. 16 (1965), 333–334. MR 171725, DOI 10.1090/S0002-9939-1965-0171725-X —, On Ramanujan’s summation of $_1{\psi _1}(a;\;b;\;z)$, Proc. Amer. Math. Soc. 22 (1969), 552-553.
- W. N. Bailey, On the basic bilateral hypergeometric series ${}_2\Psi _2$, Quart. J. Math. Oxford Ser. (2) 1 (1950), 194–198. MR 36881, DOI 10.1093/qmath/1.1.194
- G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1940. MR 0004860
- P. Kesava Menon, On Ramanujan’s continued fraction and related identities, J. London Math. Soc. 40 (1965), 49–54. MR 172840, DOI 10.1112/jlms/s1-40.1.49
- D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158–180. MR 41981, DOI 10.1112/plms/s2-53.2.158
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Manjari Upadhyay, Certain transformations and summation formulae for basic bilateral hypergeometric series $_{2}\Psi _{2}$, Amer. Math. Monthly 75 (1968), 171–172. MR 226064, DOI 10.2307/2315898 G. N. Watson, The mock theta functions. II, Proc. London Math. Soc. (2) 42 (1937), 274-304.
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 554-558
- MSC: Primary 33.20; Secondary 10.00
- DOI: https://doi.org/10.1090/S0002-9939-1970-0257413-1
- MathSciNet review: 0257413