The Arens product and duality in $B^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by B. J. Tomiuk and Pak-ken Wong
- Proc. Amer. Math. Soc. 25 (1970), 529-535
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259620-0
- PDF | Request permission
Abstract:
Let $A$ be a ${B^{\ast }}$-algebra, ${A^{{\ast }{\ast }}}$ its second conjugate space and $\pi$ the canonical embedding of $A$ into ${A^{{\ast }{\ast }}}$. ${A^{{\ast }{\ast }}}$ is a ${B^{\ast }}$-algebra under the Arens product. Our main result states that $A$ is a dual algebra if and only if $\pi (A)$ is a two-sided ideal of ${A^{{\ast }{\ast }}}$. Gulick has shown that for a commutative $A,\;\pi (A)$ is an ideal if and only if the carrier space of $A$ is discrete. As this is equivalent to $A$ being a dual algebra, Gulick’s result thus carries over to the general ${B^{\ast }}$-algebra.References
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI 10.1090/S0002-9939-1951-0045941-1
- F. T. Birtel, On a commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13 (1962), 815–822. MR 176349, DOI 10.1090/S0002-9939-1962-0176349-3
- F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. (3) 4 (1954), 154–167. MR 61768, DOI 10.1112/plms/s3-4.1.154
- Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847–870. MR 143056
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math. 18 (1966), 121–137. MR 194912
- Irving Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219–255. MR 42066, DOI 10.1090/S0002-9947-1951-0042066-0
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Tôzirô Ogasawara and Kyôichi Yoshinaga, Weakly completely continuous Banach $^*$-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15–36. MR 70068
- Tôzirô Ogasawara and Kyôichi Yoshinaga, A characterization of dual $B^*$-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 179–182. MR 70069
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Ju-kwei Wang, Multipliers of commutative Banach algebras, Pacific J. Math. 11 (1961), 1131–1149. MR 138014
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 529-535
- MSC: Primary 46.60
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259620-0
- MathSciNet review: 0259620