THE ARENS PRODUCT AND DUALITY IN B^*-ALGEBRAS

B. J. TOMIUK AND PAK-KEN WONG

Abstract. Let A be a B^*-algebra, A^{**} its second conjugate space and π the canonical embedding of A into A^{**}. A^{**} is a B^*-algebra under the Arens product. Our main result states that A is a dual algebra if and only if $\pi(A)$ is a two-sided ideal of A^{**}. Gulick has shown that for a commutative A, $\pi(A)$ is an ideal if and only if the carrier space of A is discrete. As this is equivalent to A being a dual algebra, Gulick's result thus carries over to the general B^*-algebra.

1. Introduction. Let A be a (complex) commutative B^*-algebra and let Δ be the set of all nonzero multiplicative linear functionals in A^*, the conjugate space of A. Let A' be the closed span of Δ in A^* and let $A''=A'^*$. Let π' be the embedding of A into A'' given by $\pi'(x)=\pi(x)|_{A'}$, the restriction of $\pi(x)$ to A'. Birtel [2] has introduced a product in A'' under which A'' is a commutative Banach algebra. It follows that the multiplier algebra $M(A)$ can be isometrically embedded in A''. We make use of A'', A^{**} and $M(A)$ to obtain several characterizations of duality for A which we gather together in Theorem 4.2.

2. The multiplier algebra. Let A be a semisimple Banach algebra. A mapping T on A into itself is called a multiplier if $(Tx)y=x(Ty)$ for all $x, y \in A$. It is easy to see that T is a bounded linear operator on A and that $M(A)$, the set of all multipliers on A, is a closed commutative subalgebra of the Banach algebra $B(A)$ of all bounded linear operators on A into itself under the usual operator bound norm. $M(A)$ is called the multiplier algebra of A. It is easily shown that $M(A)$ is complete under its strong operator topology (i.e., the topology on $M(A)$ generated by the seminorms $T \mapsto \|Tx\|$, $x \in A$). From now on we shall call the strong operator topology on $M(A)$ the strict topology on $M(A)$ [12]. All algebras and vector spaces under consideration are over the complex field C.

Let A be a semisimple commutative Banach algebra. Then A can be identified as an ideal of $M(A)$. In what follows we shall always consider A as a subalgebra of $M(A)$. A is strictly dense in $M(A)$ if and only if A has an approximate identity (see [12]). Let Ω be the carrier
space of \(A \) and \(\hat{A} \) the function algebra on \(\Omega \) isomorphic to \(A \) in the Gelfand theory. Then \(M(A) \) can be identified with the set of all complex-valued functions \(f \) on \(\Omega \) such that \(f\hat{A} \subset \hat{A} \). The functions \(f \) are continuous and if \(T \) is the multiplier corresponding to \(f \) then the sup norm \(\|f\|_\infty \leq \|T\| \) [12, Theorem 3.1].

Lemma 2.1. Let \(A \) be a semisimple commutative Banach algebra with an approximate identity and let \(I \) be an ideal of \(A \). Then \(I \) is dense in \(A \) if and only if it is strictly dense in \(M(A) \).

Proof. Since \(A \) has an approximate identity, \(A \) is isometrically isomorphic to a subalgebra of \(M(A) \). Let \(\text{cl}(I) \) and \(\text{cl}_s(I) \) denote the norm closure and strict closure of \(I \) in \(M(A) \), respectively. Suppose \(\text{cl}(I) = A \). Since the norm topology is finer than the strict topology on \(M(A) \), we have \(A = \text{cl}(I) \subset \text{cl}_s(I) \). Since \(A \) has an approximate identity, \(\text{cl}_s(A) = M(A) \). Hence \(\text{cl}_s(I) = M(A) \). Conversely suppose \(\text{cl}_s(I) = M(A) \). Let \(x \in A \) and let \(\{x_\beta\} \) be a net in \(I \) converging to \(x \) in the strict topology. Then \(\lim_\beta \|x_\beta e_a - xe_a\| = 0 \), for each \(e_a \). Since \(x_\beta e_a \in I \), we have \(xe_a \in \text{cl}(I) \). Therefore \(x \in \text{cl}(I) \) and so \(\text{cl}(I) = A \).

3. The algebras \(A^{**} \) and \(A'' \). Let \(A \) be a \(B^* \)-algebra. It is well known that the two Arens products defined in \(A^{**} \) coincide [4, Theorem 7.1]. For completeness we sketch the construction of one of the Arens products in \(A^{**} \) which we shall use throughout. We do this in stages as follows. (See [1], [4], [6].) Let \(x, y \in A, f \in A^*, F, G \in A^{**} \).

 (i) Define \(f \star x \) by \((f \star x)y = f(xy) \). \(f \star x \in A^* \).
 (ii) Define \(G \star f \) by \((G \star f)x = G(f \star x) \). \(G \star f \in A^* \).
 (iii) Define \(F \star G \) by \((F \star G)f = F(G \star f) \). \(F \star G \in A^{**} \).

\(A^{**} \) is a \(B^* \)-algebra under this product [4, Theorem 7.1] and, when \(A \) is embedded canonically in \(A^{**} \), it agrees with the given product on \(A \) [1].

Now let \(A \) be a commutative \(B^* \)-algebra. Following Birtel [2] we define a product on \(A'' \) given in stages as follows. Let \(x \in A, f_i \in \Delta, F, G \in A'', \alpha_i \in \mathbb{C} \). (All sums are finite.)

1. Let \((\sum \alpha_i f_i) \circ x = \sum \alpha_i f_i(x)f_i \).
2. Let \(F \circ (\sum \alpha_i f_i) = \sum \alpha_i F(f_i)f_i \).
3. Let \(F \circ G \) be given by \(F \circ G(\sum \alpha_i f_i) = \sum \alpha_i F(f_i)G(f_i) \). \(F \circ G \) is clearly a continuous linear functional on the span of \(\Delta \) and therefore can be uniquely extended to a linear functional on all of \(A' \). We denote this extension by the same symbol \(F \circ G \). The multiplication thus defined on \(A'' \) is commutative and \(\|F \circ G\| \leq \|F\| \|G\| \) and \(\pi' \) is an isomorphism of \(A \) into \(A'' \), taking the product \(xy \) into \(\pi'(x) \circ \pi'(y) \).
4. Duality in a commutative B^*-algebra. Let A be a commutative B^*-algebra with carrier space Ω. Since A has a bounded approximate identity and is a supremum norm algebra, $M(A)$ can be isometrically embedded in A'' [2], [12]. We shall assume in what follows that $M(A) \subseteq A''$.

Lemma 4.1. Let ϕ be an element of Ω and let Φ be a subset of Ω such that $\phi \notin \Phi$. Let M be the closed subspace of A' spanned by the elements of Φ. Then $\phi \notin M$.

Proof. Suppose $\phi \in M$. Then there exists $\phi_i \in \Phi$ and $\alpha_i \in C$ ($i = 1, 2, \ldots, n$) such that

$$\left\| \phi - \sum_{i=1}^{n} \alpha_i \phi_i \right\| < 1.$$

Since Ω is a locally compact Hausdorff space, there is a relatively compact open neighborhood U_i of ϕ such that $\phi_i \in U_i$ ($i = 1, 2, \ldots, n$). Moreover, there is a compact neighborhood V_i of ϕ with $V_i \subseteq U_i$ ($i = 1, 2, \ldots, n$). Since $\hat{A} = C_0(\Omega)$, the algebra of all continuous complex-valued functions on Ω vanishing at infinity, by [8, Theorem 3E], there exists an $x_i \in \hat{A}$ such that $0 \leq \hat{x}_i \leq 1$, $\hat{x}_i = 1$ on V_i, and $\hat{x}_i = 0$ on the complement of U_i ($i = 1, 2, \ldots, n$). Then $\phi(x_i) = 1$ and $\phi_i(x_i) = 0$ ($i = 1, \ldots, n$). Since $\left\| x_1 \cdots x_n \right\| \leq 1$ and $\phi_i(x_1 \cdots x_n) = 0$ ($i = 1, \ldots, n$), by (#) we have that $\left| \phi(x_1 \cdots x_n) \right| < 1$. But $\phi(x_1 \cdots x_n) = \phi(x_1) \cdots \phi(x_n) = 1$; a contradiction. Hence $\phi \notin M$, and the proof is complete.

Let A be a semisimple commutative Banach algebra with carrier space Ω. A function f on Ω is said to belong locally to \hat{A} at $p \in \Omega$ if there exists a neighborhood V of p and a function $\hat{x} \in \hat{A}$ such that $f|_V = \hat{x}|_V$, where $f|_V$ and $\hat{x}|_V$ denote the restrictions of f and \hat{x} to V.

Let A be a commutative B^*-algebra and let $J_A(\infty)$ be the set of $x \in A$ such that \hat{x} has a compact support. Since A is also strongly semisimple, by [11, Theorem (2.7.25)] and [5, Théorème (2.9.5) (iii)], we have $\text{cl}(J_A(\infty)) = A$; i.e., A is Tauberian.

For any set S in a Banach algebra A, let S_L and S_R denote the left and right annihilators of S in A, respectively. A is called an annihilator algebra if, for every closed left ideal J and for every closed right ideal R, we have $J = (0)$ if and only if $J = A$ and $R = (0)$ if and only if $R = A$. A is called a dual algebra if $J_{rt} = J$ and $R_{tr} = R$ for all closed left ideals J and all closed right ideals R.

Let H be a Hilbert space and $L(H)$ the algebra of all continuous linear operators on H into itself with the usual operator bound norm.
Let $LC(H)$ be the subalgebra of $L(H)$ consisting of all compact operators on H and $\tau c(H)$ the subalgebra of $L(H)$ consisting of all trace class operators on H. We are now ready to prove the following theorem.

Theorem 4.2. For a commutative B^*-algebra A, the following statements are equivalent:

1. A is a dual algebra.
2. Ω is discrete.
3. $M(A) = A''$.
4. For each $F \subseteq A''$, F belongs locally to \hat{A} at each point of Ω.
5. $\pi'(A)$ is an ideal of A''.
6. $\pi(A)$ is an ideal of A^{**}.
7. The socle of A is strictly dense in $M(A)$.

Proof. (1) \Rightarrow (2). Suppose (1) holds. Let $0 \in \Omega$ and let $M = \{a \in A : \phi(a) = 0\}$. Then M is a maximal modular ideal of A and, since A is an annihilator algebra, by [3, Theorem 1], $M = \{x - ex : x \in A\}$, where e is a minimal idempotent of A. Clearly e is selfadjoint and $\phi(e) = 1$. It is easy to see that $\phi' = 0$ for all $\phi' \in \Omega$, $\phi' \neq \phi$. Thus \hat{e} is the characteristic function of the set $\{\phi\}$ and since \hat{e} is continuous in the weak topology of Ω, it follows that $\{\phi\}$ is open. Hence Ω is discrete.

(2) \Rightarrow (1). Suppose (2) holds. Let M be a maximal modular ideal of A and let ϕ be the element of Ω corresponding to M. Since Ω is discrete, the characteristic function of the set $\{\phi\}$ is continuous and hence is the image of an element $e \in A$ by the Gelfand mapping. It is straightforward to show that $M = \{x - ex : x \in A\}$. As e is an idempotent, we have $M_1 \neq (0)$. But, by [5, Théorème (2.9.5) (iii)], each closed ideal of A is the intersection of maximal modular ideals containing it. Hence A is an annihilator algebra and therefore dual by [3, Corollary, Theorem 3].

(1) \Rightarrow (6). Suppose A is dual. (In the argument that follows we may take A to be any dual B^*-algebra.) Then, by [7, Lemma 2.3], there exists a family of Hilbert spaces $\{H_\lambda\}$ and A is isometrically $*$-isomorphic to $(\sum LC(H_\lambda))_0$, the $B^*(\infty)$-sum of $\{LC(H_\lambda)\}$. It is easy to verify that A^* is isometrically isomorphic to $(\sum \tau c(H_\lambda))_1$, the L_1-direct sum of $\{\tau c(H_\lambda)\}$, and that in turn A^{**} is isometrically isomorphic to the normed full direct sum $\sum L(H_\lambda)$ of $\{L(H_\lambda)\}$. Clearly $(\sum LC(H_\lambda))_0$ is a closed (two-sided) ideal of $\sum L(H_\lambda)$. But the Arens product and the given product coincide on $\sum L(H_\lambda)$ since they coincide on each $L(H_\lambda)$ [11, p. 289]. Hence $\pi(A)$ is a closed (two-sided) ideal of A^{**}.
(6)⇒(5). Suppose (6) holds. Let \(F \in A'' \) and let \(\mathcal{F} \) be an isometric extension of \(F \) to all of \(A^* \). Since \(\pi(x) * \mathcal{F} \subseteq \pi(A) \) and

\[
(\pi'(x) \circ F) \mid \Omega = (\pi(x) * \mathcal{F}) \mid \Omega,
\]

\((\pi'(x) \circ F) \mid \Omega \) is a continuous function on \(\Omega \) vanishing at infinity. Hence \(\pi'(x) \circ F \in \pi'(A) \).

(5)⇒(2). Suppose (5) holds and let \(U \) be a compact subset of \(\Omega \). We claim that \(U \) is finite. Suppose this is not so. Let \(\{ \phi_\gamma \} \) be a net in \(U \) converging to an element \(\phi \) and such that \(\phi_\gamma \not\equiv \phi \) for all \(\gamma \). Let \(M \) be the closed subspace of \(A' \) spanned by the \(\phi_\gamma \). By Lemma 4.1, \(\phi \in M \) and so there exists an \(F \in A'' \) such that \(F(M) = 0 \) and \(F(\phi) \not\equiv 0 \). Let \(x \in A \) be such that \(\phi(x) \not\equiv 0 \). Since \(\phi_\gamma \in M \), \(F \circ \pi'(x)(\phi_\gamma) = F(\phi_\gamma)\phi_\gamma(x) = 0 \). But \(F \circ \pi'(x)(\phi) = F(\phi)\phi(x) \not\equiv 0 \). Hence, since \(\phi_\gamma \to \phi \) in the topology of \(\Omega \), it follows that \(F \circ \pi'(x) \) is not continuous at \(\phi \) and so \(F \circ \pi'(x) \not\in \pi'(A) \), which contradicts the assumption that \(\pi'(A) \) is an ideal of \(A'' \). Hence \(U \) is finite and consequently \(\Omega \) is discrete.

(2)⇒(3). This follows from [2, Theorem, p. 817].

(3)⇒(4). This is [2, Lemma 1].

(4)⇒(3). Suppose (4) holds. Since \(A \) is Tauberian, \(cl(xA) = cl(xJ_A(\infty)) \) for all \(x \in A \) and, since \(A \) has an approximate identity, \(x \in cl(xJ_A(\infty)) \). Hence, by [2, Lemma 3], \(A'' \subseteq M(A) \) and therefore, since \(\pi'(A) \) is an ideal of \(A'' \), then \(\pi'(A) \not\in \pi'(A) \).

(1)⇒(7). This follows from Lemma 2.1 and the fact that a \(B^* \)-algebra is dual if and only if it has a dense socle [7].

5. Duality in a general \(B^* \)-algebra.

Theorem 5.1. Let \(A \) be a \(B^* \)-algebra and \(\pi \) the canonical mapping of \(A \) into \(A^{**} \). Then the following statements are equivalent:

(a) \(A \) is a dual algebra.

(b) \(\pi(A) \) is a closed two-sided ideal of \(A^{**} \).

Proof. (a)⇒(b). This is given in the proof of (1)⇒(6) of Theorem 4.2.

(b)⇒(a). Suppose (b) holds. Let \(B \) be a maximal commutative \(* \)-subalgebra of \(A \) and \(\pi_1 \) the canonical mapping of \(B \) into \(B^{**} \). For each \(f \in A^* \), let \(f_B = f|_B \), the restriction of \(f \) to \(B \); clearly \(f_B \in B^* \). For each \(F \in B^{**} \), let \(\tilde{f} \) be the linear functional on \(A^* \) defined by

\[
\tilde{F}(f) = F(f_B) \quad (f \in A^*).
\]
Then \(\tilde{F} \in A^{**} \) and it is easy to show that \(F \to \tilde{F} \) is an isometric isomorphism of \(B^{**} \) into \(A^{**} \). Let \(x \in B \). Since

\[
\pi_1(x)(f) = \pi_1(x)(f_B) = f_B(x) = \pi(x)(f) \quad (f \in A^*) ,
\]

we have \(\pi_1(x) = \pi(x) \), for all \(x \in B \), so that \(F \to \tilde{F} \) maps \(\pi_1(B) \) onto \(\pi(B) \).

We shall now show that \(\pi(x) \ast \tilde{F} \in \pi(B) \) for all \(x \in B \) and \(F \in B^{**} \). Let \(y \in B \). Then, for all \(f \in A^* \), we have

\[
((\pi(x) \ast \tilde{F}) \ast \pi(y))(f) = \pi(x)(\tilde{F} \ast (\pi(y) \ast f)) \\
= \tilde{F}((\pi(y) \ast f) \ast x) = F((\pi(y) \ast f \ast x)_B).
\]

Similarly, for all \(f \in A^* \),

\[
(\pi(y) \ast (\pi(x) \ast \tilde{F}))(f) = F((f \ast y \ast x)_B).
\]

But

\[
(\pi(y) \ast f \ast x)_B = (f \ast y \ast x)_B;
\]

in fact, for all \(z \in B \), we have

\[
(\pi(y) \ast f \ast x)_B(z) = f(xzy) = f(yxz) = (f \ast y \ast x)(z) \\
= (f \ast y \ast x)_B(z).
\]

Hence

\[
(\pi(x) \ast \tilde{F}) \ast \pi(y) = \pi(y) \ast (\pi(x) \ast \tilde{F}) \quad (x, y \in B, F \in B^{**}).
\]

Since \(\pi(B) \) is a maximal commutative \(*\)-subalgebra of \(\pi(A) \) and since \(\pi(x) \ast \tilde{F} \in \pi(A) \) (by hypothesis), we have \(\pi(x) \ast \tilde{F} \in \pi(B) \). Now

\[
\pi(x) \ast \tilde{F} = \pi_1(x) \ast \tilde{F} = (\pi_1(x) \ast F)^\sim
\]

and hence \(\pi_1(x) \ast F \in \pi_1(B) \), which shows that \(\pi_1(B) \) is an ideal of \(B^{**} \). Thus \(B \) is dual by Theorem 4.2. Since this is true for every maximal commutative \(*\)-subalgebra \(B \) of \(A \), [10, Theorem 1] shows that \(A \) is a dual algebra.

References

University of Ottawa, Ottawa, Canada