Maximal $C^{\ast }$-subalgebras of a Banach algebra
HTML articles powered by AMS MathViewer
- by Ellen Torrance
- Proc. Amer. Math. Soc. 25 (1970), 622-624
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259629-7
- PDF | Request permission
Abstract:
Let $A$ be a complex Banach algebra with identity and let $H$ be its set of hermitain elements. It is shown that $H + iH$ is a ${C^{\ast }}$-algebra if and only if ${h^2} \in H + iH$ whenever $h \in H$; and that every ${C^{\ast }}$-subalgebra of $A$ is contained in $H + iH$.References
- Earl Berkson, Some characterizations of $C^{\ast }$-algebras, Illinois J. Math. 10 (1966), 1–8. MR 185455
- Barnett W. Glickfeld, A metric characterization of $C(X)$ and its generalization to $C^{\ast }$-algebras, Illinois J. Math. 10 (1966), 547–556. MR 201988
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- G. Lumer, Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75–85. MR 169074
- T. W. Palmer, Characterizations of $C^{\ast }$-algebras, Bull. Amer. Math. Soc. 74 (1968), 538–540. MR 222659, DOI 10.1090/S0002-9904-1968-11998-6 —, Unbounded normal operators on Banach spaces, Ph.D. Thesis, Harvard University, Cambridge, Mass., 1965.
- Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 84733, DOI 10.1007/BF01186601
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 622-624
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259629-7
- MathSciNet review: 0259629