Analyticity and quasi-analyticity for one-parameter semigroups
HTML articles powered by AMS MathViewer
- by J. W. Neuberger
- Proc. Amer. Math. Soc. 25 (1970), 488-494
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259661-3
- PDF | Request permission
Abstract:
Suppose that $T$ is a strongly continuous (even at $0$) one-parameter semigroup of bounded linear transformations on a real Banach space $S$ and $T$ has generator $A$. Theorem A. If $\lim {\sup _{x \to 0}}|T(x) - I| < 2$ then $AT(x)$ is bounded for all $x > 0$. Suppose $\{ {\delta _q}\} _{q = 1}^\infty$ is a sequence of positive numbers convergent to $0$ and each of $N(q),\;q = 1,\;2, \cdots$ is an increasing sequence of positive integers. Denote by $Q$ the collection consisting of (1) all real analytic functions on $(0,\;\infty )$ and (2) all $h$ on $(0,\;\infty )$ for which there is a Banach space $S$, a member $p$ of $S$, a member $f$ of ${S^{\ast }}$ and a strongly continuous semigroup $L$ of bounded linear transformations so that $h(x) = f[L(x)p]$ for all $x > 0$ where $L$ satisfies $\lim {\sup _{n \to \infty (n \in N(q))}}|L({\delta _q}/n) - I| < 2,\;q = 1,\;2,\; \cdots$. Theorem B. No two members of $Q$ agree on an open subset of $(0,\;\infty )$.References
- Arne Beurling, On analytic extension of semigroups of operators, J. Functional Analysis 6 (1970), 387–400. MR 0282248, DOI 10.1016/0022-1236(70)90068-6
- Tosio Kato, A characterization of holomorphic semigroups, Proc. Amer. Math. Soc. 25 (1970), 495–498. MR 264456, DOI 10.1090/S0002-9939-1970-0264456-0
- David G. Kendall, Some recent developments in the theory of denumerable Markov processes, Trans. Fourth Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes (Prague, 1965) Academia, Prague, 1967, pp. 11–27. MR 0217885
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- J. W. Neuberger, A quasi-analyticity condition in terms of finite differences, Proc. London Math. Soc. (3) 14 (1964), 245–259. MR 159914, DOI 10.1112/plms/s3-14.2.245 —, Quasi-analyticity of trajectories of semi-groups of bounded linear transformations, Notices Amer. Math. Soc. 12 (1965), 815. Abstract #65T-454.
- J. W. Neuberger, An exponential formula for one-parameter semi-groups of nonlinear transformations, J. Math. Soc. Japan 18 (1966), 154–157. MR 200734, DOI 10.2969/jmsj/01820154
- J. W. Neuberger, Quasi-analytic collections containing Fourier series which are not infinitely differentiable, J. London Math. Soc. 43 (1968), 612–616. MR 229778, DOI 10.1112/jlms/s1-43.1.612
- David Williams, On operator semigroups and Markov groups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 280–285. MR 254920, DOI 10.1007/BF00539205
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 488-494
- MSC: Primary 47.50
- DOI: https://doi.org/10.1090/S0002-9939-1970-0259661-3
- MathSciNet review: 0259661