ANALYTICITY AND CONTINUATION OF CERTAIN
FUNCTIONS OF TWO COMPLEX VARIABLES1

CARL H. FITZGERALD

Abstract. This paper shows that the satisfaction of a certain
quadratic relation is a sufficient condition that a continuous, sym-
metric function of two complex variables on a domain be analytic
and be continuable to a particular larger domain. This quadratic
relation is of the same type as that involved in the Grunsky in-
equalities.

In proving a generalization of the Grunsky inequalities, Bergman
and Schiffer [3] announced a theorem on analytic continuation of a
function of two complex variables. In extending the Grunsky in-
equalities in another way, Alenicyn [1] found this theorem on con-
tinuation useful. The purpose of this note is to strengthen the Berg-
man-Schiffer theorem to be more natural for both applications and to
provide a proof that is more direct than the formal computation in
the original proof.

Suppose \mathcal{D} and \mathcal{G} are bounded domains, and \mathcal{G} is contained in \mathcal{D}. Let $\int_{\mathcal{D}} dA_z$ denote area integration as z ranges over \mathcal{D}. Let $K_{\mathcal{D}}(z, \xi)$ be the Bergman kernel function [2] for the domain \mathcal{D}.

Theorem. If $V(z, \xi)$ is a symmetric, continuous, complex-valued
function on $\mathcal{G} \times \mathcal{G}$, and

\[
\left| \int_{\mathcal{G}} \int_{\mathcal{G}} V(z, \xi) \overline{\phi(z)} \phi(\xi) dA_z dA_\xi \right| \leq \int_{\mathcal{G}} \int_{\mathcal{G}} K_{\mathcal{D}}(z, \xi) \overline{\phi(z)} \phi(\xi) dA_z dA_\xi
\]

for all continuous, complex-valued function ϕ with compact support in \mathcal{G}, then $V(z, \xi)$ is analytic in $\mathcal{G} \times \mathcal{G}$ and can be continued onto $\mathcal{D} \times \mathcal{D}$.

Proof. Let G be a subdomain of \mathcal{G} such that the closure \overline{G} is con-
tained in \mathcal{G}. There exists a complete orthonormal system of analytic
functions $\{\phi_n\}_{n=1}^\infty$ on \mathcal{D}, which is also orthogonal on G, [2]. Let

\[
k_n^2 = \int_{\mathcal{G}} \phi_n(z) \overline{\phi_n(z)} dA_z \quad \text{for } n = 1, 2, \ldots
\]

Received by the editors October 7, 1969.

AMS Subject Classifications. Primary 3028, 3086, 3235; Secondary 3009, 3042.
Key Words and Phrases. Grunsky inequalities, Bergman kernel function, analytic
continuation, two complex variables, doubly orthogonal functions.

1 This work was supported in part by the Air Force Grant AFOSR-68-1514.

536
Then \(\{\phi_n(z)/k_n\}_{n=1}^\infty \) is an orthonormal system on \(G \), but is not necessarily a complete system.

Let \(a_{nm} \) be defined by

\[
(2) \quad k_n k_m a_{nm} = \int_G \int_G V(z, \zeta) \overline{\phi_n(z)} \phi_m(\zeta) dA_z dA_\zeta.
\]

Since \(V(z, \zeta) \) is continuous on \(\overline{G} \times \overline{G} \), \(\int_G \int_G |V(z, \zeta)|^2 dA_z dA_\zeta < \infty \). Then by the usual argument, [2]

\[
\sum_{n,m=1}^\infty a_{nm} \phi_n(z) \phi_m(\zeta)
\]

converges uniformly on compact subsets of \(G \). It is now shown that the series converges to \(V(z, \zeta) \).

Suppose \(\Gamma_1(z) \) is a continuous function on \(G \), has \(\int_G |\Gamma_1(z)|^2 dA_z < \infty \), and is orthogonal to \(\phi_n \) on \(G \) for \(n = 1, 2, \ldots \). Let \(\Gamma_2(z) \) be any continuous function on \(\overline{G} \), and \(\lambda \) be a real number. By using the symmetry of \(V(z, \zeta) \),

\[
\left| \int_G \int_G V(z, \zeta) [\Gamma_1(z) + \lambda \Gamma_2(z)] [\Gamma_1(\zeta) + \lambda \Gamma_2(\zeta)] dA_z dA_\zeta \right|
\]

\[
= \left| \int_G \int_G V(z, \zeta) \overline{\Gamma_1(z)} \Gamma_1(\zeta) dA_z dA_\zeta \right|
\]

\[
+ 2\lambda \int_G \int_G V(z, \zeta) \overline{\Gamma_1(z)} \Gamma_2(\zeta) dA_z dA_\zeta
\]

\[
+ \lambda^2 \int_G \int_G V(z, \zeta) \overline{\Gamma_2(z)} \Gamma_2(\zeta) dA_z dA_\zeta
\]

on the other hand, by (1) and the orthogonality of \(\Gamma_1 \) to \(\phi_n \) on \(G \)

\[
\leq \lambda^2 \int_G \int_G K_{\phi}(z, \zeta) \overline{\Gamma_2(z)} \Gamma_2(\zeta) dA_z dA_\zeta
\]

for all real \(\lambda \).

Thus

\[
\int_G \int_G V(z, \zeta) \overline{\Gamma_1(z)} \Gamma_1(\zeta) dA_z dA_\zeta = 0
\]

and

\[
\int_G \int_G V(z, \zeta) \overline{\Gamma_1(z)} \Gamma_2(\zeta) dA_z dA_\zeta = 0.
\]

Letting
\[
\Gamma_1(\xi) = \int_G V(z, \xi) \overline{\Gamma_1(z)} \, dA_z,
\]
by (3)
\[
\int_G \left\{ \int_G V(z, \xi) \overline{\Gamma_1(z)} \left[\int_G V(z, \xi) \overline{\Gamma_1(z)} \, dA_z \right] dA_z \right\} \, dA_t = 0,
\]
\[
\int_G \left| \int_G V(z, \xi) \overline{\Gamma_1(z)} \, dA_z \right|^2 \, dA_t = 0.
\]
Hence
\[
(4) \quad \int_G V(z, \xi) \overline{\Gamma_1(z)} \, dA_z = 0 \quad \text{for all } \xi \text{ in } G,
\]
for all functions \(\Gamma_1(z) \) that are continuous on \(G \), have \(\int_G \left| \Gamma_1(z) \right|^2 \, dA_z < \infty \) and are orthogonal to \(\phi_n(z) \) on \(G \) for \(n = 1, 2, \ldots \).

Let \(\delta_k(z - z_0) \) be the \(k \)th continuous approximation to the delta function at \(z_0 \) such that \(\delta_k(z - z_0) = 0 \) for all \(z \) in \(G \) with \(|z - z_0| > 1/k \). Then \(\delta_k(z - z_0) \) can be expressed by
\[
(\star) \quad \Psi_k(z) + \sum_{n=1}^{\infty} b^{(k)}_n \phi_n(z)
\]
for \(z \) in \(G \), where \(\Psi_k(z) \) is orthogonal to \(\phi_n(z) \) for \(n = 1, 2, \ldots \), on \(G \), has \(\int_G \left| \Psi_k(z) \right|^2 \, dA_z < \infty \) and is continuous on \(G \). By (4), the definition of \(a_{nm} \),
\[
\int_G \int_G \left[V(z, \xi) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z) \phi_m(\xi) \overline{[\Psi_k(z) + \sum_{n=1}^{\infty} b^{(k)}_n \phi_n(z)]} \right] \cdot \left[\Psi_k(\xi) + \sum_{m=1}^{\infty} b^{(k)}_m \phi_m(\xi) \right] \, dA_z \, dA_t = 0.
\]
If \(z_0 \) is in \(G \), taking \(\lim_{k \to \infty} \) yields
\[
(5) \quad V(z_0, z_0) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z_0) \phi_m(z_0) = 0.
\]
A similar computation using \(\delta_k(z - z_0) + \delta_k(z - z_1) \) for the test function yields
\[
V(z_0, z_0) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z_0) \phi_m(z_0) + V(z_0, z_1) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z_0) \phi_m(z_1) + V(z_1, z_0) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z_1) \phi_m(z_0) + V(z_1, z_1) - \sum_{n,m=1}^{\infty} a_{nm} \phi_n(z_1) \phi_m(z_1) = 0.
\]
By (5) and the symmetry of V and thus of α_{nm},

$$V(z, \xi) = \sum_{n, m=1}^{\infty} \alpha_{nm} \phi_n(z) \phi_m(\xi) \quad \text{for all } z \text{ and } \xi \text{ in } G.$$

Hence V is analytic on $G \times G$.

It is now shown that the series (6) converge for z and ξ in \mathcal{D}.

Let $\theta_k(z) + \sum_{n=1}^{\infty} C_n \phi_n(z)$ be the representation of the kth continuous approximation to the delta function at z_0 where the representation holds for z in \mathcal{D}, and $\theta_k(z)$ is orthogonal to $\phi_n(z)$ on \mathcal{D} for $n = 1, 2, \ldots$.

\[
\int_{\mathcal{D}} \int_{\mathcal{D}} \left[\sum_{n, m=1}^{L} \alpha_{nm} \phi_n(z) \phi_m(\xi) \right] \left[\theta_k(z) + \sum_{n=1}^{\infty} C_n \phi_n(z) \right] \cdot \left[\theta_k(\xi) + \sum_{m=1}^{\infty} C_m \phi_m(\xi) \right] dA_z dA_\xi \]

\[
\leq \int_{\mathcal{D}} \int_{\mathcal{D}} K_{\mathcal{D}}(z, \xi) \left[\sum_{n=1}^{L} C_n \phi_n(z) \right] \left[\sum_{m=1}^{L} C_m \phi_m(\xi) \right] dA_z dA_\xi \]

\[
\leq \int_{\mathcal{D}} \int_{\mathcal{D}} K_{\mathcal{D}}(z, \xi) \left[\theta_k(z) + \sum_{n=1}^{\infty} C_n \phi_n(z) \right] \cdot \left[\theta_k(\xi) + \sum_{m=1}^{\infty} C_m \phi_m(\xi) \right] dA_z dA_\xi \]
taking the $\lim_{k \to \infty}$

\[K(\mathbf{z}_0, \mathbf{\tilde{z}}_0) \geq \left| \sum_{n,m=1}^{L} \alpha_{nm} \phi_n(\mathbf{z}_0) \phi_m(\mathbf{\tilde{z}}_0) \right| \quad \text{for all } L. \]

A similar computation using a representation of an approximation of the delta function at \mathbf{z}_0 plus the delta function at \mathbf{z}_1 and utilizing (7) yields

\[K(\mathbf{z}_0, \mathbf{\tilde{z}}_0) + \text{Re} \ K(\mathbf{z}_0, \mathbf{\tilde{z}}_1) + K(\mathbf{z}_1, \mathbf{\tilde{z}}_1) \geq \left| \sum_{n,m=1}^{L} \alpha_{nm} \phi_n(\mathbf{z}_0) \phi_m(\mathbf{\tilde{z}}_1) \right|. \]

Hence $\left\{ \sum_{n,m=1}^{L} \alpha_{nm} \phi_n(\mathbf{z}) \phi_m(\mathbf{\tilde{z}}) \right\}_{L=1}^{\infty}$ is a normal family on $\mathbb{D} \times \mathbb{D}$. Since it converges to $V(\mathbf{z}, \mathbf{\tilde{z}})$ on $G \times G$, $\sum_{n,m=1}^{\infty} \alpha_{nm} \phi_n(\mathbf{z}) \phi_m(\mathbf{\tilde{z}})$ must converge to an analytic function on $\mathbb{D} \times \mathbb{D}$ that is a continuation of $V(\mathbf{z}, \mathbf{\tilde{z}})$.

Corollary. If $V(\mathbf{z}, \mathbf{\tilde{z}})$ is a symmetric, continuous, complex-valued function on $G \times G$, and

\[\left| \sum_{n=1}^{L} \sum_{m=1}^{L} \alpha_n \alpha_m V(\mathbf{z}_n, \mathbf{z}_m) \right| \leq \sum_{n=1}^{L} \sum_{m=1}^{L} \alpha_n \alpha_m K(\mathbf{z}_n, \mathbf{\tilde{z}}_m) \]

for all complex vectors $(\alpha_1, \alpha_2, \cdots)$, and (z_1, z_2, \cdots) with all z_n in G, then $V(\mathbf{z}, \mathbf{\tilde{z}})$ is analytic in $G \times G$ and can be continued onto $\mathbb{D} \times \mathbb{D}$.

References

University of California at San Diego, La Jolla, California 92038