A proof of Whitman’s representation theorem for finite lattices
HTML articles powered by AMS MathViewer
- by S. K. Thomason
- Proc. Amer. Math. Soc. 25 (1970), 618-619
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265234-9
- PDF | Request permission
Abstract:
The theorem to be proved states that every finite lattice is isomorphic to a sublattice of the lattice $\mathcal {E}(S)$ of all equivalence relations on a countable set $S$. Our proof combines concreteness with freedom from long routine computations.References
- Bjarni Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193–206. MR 58567, DOI 10.7146/math.scand.a-10377
- Philip M. Whitman, Lattices, equivalence relations, and subgroups, Bull. Amer. Math. Soc. 52 (1946), 507–522. MR 16750, DOI 10.1090/S0002-9904-1946-08602-4
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 618-619
- MSC: Primary 06.30
- DOI: https://doi.org/10.1090/S0002-9939-1970-0265234-9
- MathSciNet review: 0265234