SOME ASYMPTOTIC THEOREMS FOR ABSTRACT DIFFERENTIAL EQUATIONS

S. ZAIDMAN¹

ABSTRACT. We consider in this paper results on differential equations with time independent operators; uniqueness of solutions which are bounded in the Stepanoff norm as well as weak almost-periodic solutions are some of the topics here considered.

Introduction. In this paper, which is closely related with some of our previous publications, a number of results concerning differential equations in Hilbert and Banach spaces are derived. They concern asymptotic behaviour, boundedness and almost-periodicity.

1. Our first result, a very simple one, is "essentially" the Theorem 1 in [1]. Here it is given in its natural, operator case framework.

THEOREM 1. Let H be a Hilbert space, A a closed linear operator in H with dense domain D(A); A^* be its adjoint operator, and suppose that for a real β the relations

(1.1)
$$\text{Re}(Ax, x) \leq \beta(x, x), \qquad \forall x \in D(A),$$

$$\text{Re}(A^*y, y) \leq \beta(y, y), \qquad \forall y \in D(A^*)$$

are verified. Let u(t), $t \ge 0 \rightarrow D(A)$, be a strong solution of equation

$$(1.2) u'(t) = Au(t).$$

Then $||u(t)|| \leq e^{\beta t} ||u(0)||$ holds, $\forall t \geq 0$.

PROOF. Let us put $v(t) = e^{-\beta t}u(t)$. Then $v'(t) = (A - \beta I)v(t)$. It is easy to see that $A - \beta I$ is the infinitesimal generator of a strongly continuous one-parameter semigroup $T_{\beta}(t)$ such that $||T_{\beta}(t)|| \leq 1$. We see also the representation $v(t) = T_{\beta}(t)v(0)$; consequently $||v(t)|| \leq ||v(0)|| = ||u(0)||$ and $||u(t)|| \leq e^{\beta t}||u(0)||$.

Now, a very simple result about asymptotic behaviour (cf. Theorem 2 in [1]) is the

Received by the editors September 22, 1969.

AMS Subject Classifications. Primary 3495.

Key Words and Phrases. Hilbert space, linear closed operator, adjoint operator, strong solution, infinitesimal operator, one-parameter semigroup, Banach space, almost-periodic functions, compact operators, dual Banach space, space $L^p(\mathbb{R}^n)$, truncation operator, translation operator.

¹ Supported by National Research Council of Canada.

THEOREM 2. Let us have (1.1) with $\beta < 0$. Then if $f_0 \in H$ is given and u(t), $t \ge 0 \rightarrow D(A)$ is solution of

(1.3)
$$u'(t) = Au(t) + f_0.$$

There exists $w_0 \in H$ such that $\lim_{t\to\infty} u(t) = w_0$.

PROOF. It follows easily that A^{-1} exists and belongs to $\mathfrak{L}(H, H)$. We consider $w_0 = -A^{-1}f_0$, and put $v(t) = u(t) - w_0$. We have v'(t) = Av(t); apply Theorem 1 and we get, as $\beta < 0$, $\lim_{t\to\infty} u(t) = w_0$.

Our next result is a simple generalization of Lemma 1 in our paper [2].

THEOREM 3. Let \mathfrak{X} be a Banach space, and $T_t \in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$, $t \geq 0$, be a one parameter strongly continuous semigroup, such that $||T_t|| \leq Me^{\beta t}$, $\beta < 0$, $t \geq 0$. Let A be its infinitesimal generator and u(t), $-\infty < t < +\infty \to D(A)$, be a strong solution of u'(t) = Au(t). Then if $\sup_{t \in \mathbb{R}^1} \int_t^{t+1} ||u(\sigma)||^2 d\sigma < \infty$ it follows $u(t) = \theta$ for every real t.

REMARK. Similar results are given in our paper [3].

PROOF. We see firstly the representation: $u(t) = T_{t-t_0}u(t_0)$, $\forall t \geq t_0$. Then we remark existence of a sequence $(t_n)_1^{\infty}$ such that $\lim_{n\to\infty} t_n = -\infty$ and such that $\sup_{n\in\Re} ||u(t_n)|| = L < \infty$. Next for arbitrary real t we take n large enough in order to have $t_n < t$ and consequently $u(t) = T_{t-t_n}u(t_n)$. So we derive $||u(t)|| \leq Me^{\beta(t-t_n)} \cdot L$; for $n\to\infty$ we get u(t) = 0.

2. In this section we give a complement to our result on almost-periodicity of certain relatively-compact valued vector functions (see [4]) by taking into account weakly almost-periodic solutions (of abstract differential equations). Remember that if \mathfrak{X} is a Banach space and \mathfrak{X}^* its strong dual, a continuous function f(t), $-\infty < t < +\infty \to \mathfrak{X}$ is weakly almost-periodic when $\langle x^*, f(t) \rangle$ is Bohr-almost-periodic for every $x^* \in \mathfrak{X}^*$. Our result is the following

THEOREM 4. In the Banach space \mathfrak{X} , consider a strongly continuous one-parameter semigroup $T_t \in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ such that $\lim_{t \to \infty} T_t x = \theta$, $\forall x \in \mathfrak{X}$. Let also $Q \in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ be a compact operator commuting with T_t , $\forall t \geq 0$. Its inverse Q^{-1} exists on a dense set in \mathfrak{X} , and the adjoint $(Q^{-1})^*$ is defined on a dense set in \mathfrak{X}^* . Let A be the infinitesimal generator of T_t ; f(t) a continuous weakly almost-periodic function $-\infty < t < +\infty \to \mathfrak{X}$; u(t) a strong solution, on the whole real axis of equation u'(t) = Au(t) + f(t), such that $\sup_{t \in \mathbb{R}^1} ||u(t)|| < \infty$. Then u(t) is weakly almost-periodic.

PROOF. We remark first, as a standard result, the representation formula

$$u(t) = T_{t-t_0}u(t_0) + \int_{t_0}^t T_{t-s}f(s)ds, \quad t \ge t_0.$$

Next we see that: if g(t), $-\infty < t < +\infty \to \mathfrak{X}$, is a bounded function such that $\langle x^*, g(t) \rangle$ is almost-periodic for a dense set of elements in the dual space \mathfrak{X}^* , then g(t) is weakly almost-periodic. The result is a corollary of the fact that uniform convergent on R^1 sequences of almost-periodic functions have almost periodic limit. A simple remark now is that w(t) = Qu(t) has representation

$$w(t) = T_{t-t_0}w(t_0) + \int_{t_0}^t T_{t-s}(Qf)(s)ds, \quad t \ge t_0$$

and that range of w(t) is relatively compact in \mathfrak{X} as $t \in \mathbb{R}^1$. Then we have

LEMMA. If h(t) is continuous weakly almost-periodic, $t \in \mathbb{R}^1 \to \mathfrak{X}$, and if Q is a compact operator $\in \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$ then Qh is strongly almost-periodic.

In fact h(t) is bounded, hence Qh has relatively compact range. Moreover Qh(t) is weakly almost-periodic too; by well-known facts Qh(t) is strongly almost-periodic.

By this Lemma, Qf is almost-periodic. We apply our Theorem 1 in [4] and obtain that w(t) = Qu(t) is almost-periodic. Then $u(t) = Q^{-1}w(t) = Q^{-1}Qu(t)$. We take now $x^* \in D((Q^{-1})^*)$ (which is dense in \mathfrak{X}^*).

We have $\langle x^*, Q^{-1}Qu(t)\rangle = \langle (Q^{-1})^*x^*, w(t)\rangle$ which is almost-periodic Bohr. From the above made remarks, u(t) is weakly almost-periodic.

3. Here we remember a certain natural generalization of almost-periodic functions.

DEFINITION 3.1. Let h(t), $0 \le t < \infty$, be a continuous function with values in the Banach space \mathfrak{X} . We say that h(t) is in the class $\mathfrak{G}_{\mathfrak{X}}^+$ when the set of translates $(h(t+\eta))_{\eta\ge 0}$ is a relatively compact set in the space $C[0, \infty; \mathfrak{X}]$.

DEFINITION 3.2. Let h(t) be a continuous function, $0 \le t < \infty \to \mathfrak{X}$. We say that h(t) is in the class $\mathfrak{F}_{\mathfrak{X}}^+$ when $\forall \epsilon > 0$, $\exists L_{\epsilon} > 0$, $N_{\epsilon} > 0$, such that in every interval $[a, a + L] \subset [0, \infty)$, $\exists \zeta_{\epsilon}$ with property

$$\sup_{t>N_{\epsilon}} ||h(t+\zeta_{\epsilon})-h(t)||_{\mathfrak{X}} < \epsilon.$$

In the Appendix of our paper [1] a proof of the inclusion $\mathcal{B}_{x}^{+} \subset \mathcal{F}_{x}^{+}$ is indicated.

DEFINITION 3.3. A continuous function, $0 \le t < \infty \to \mathfrak{X}$, h(t) is called weakly- $\mathfrak{G}_{\mathfrak{X}}^+$ (resp. weakly - $\mathfrak{F}_{\mathfrak{X}}^+$) if, for each $x^* \in \mathfrak{X}^*$, $\langle x^*, h(t) \rangle$ is in

class \mathfrak{G}^+ (resp \mathfrak{F}^+) corresponding to $\mathfrak{X}=$ scalar field. It is easy to see that if $g(t) \in \mathfrak{F}^+_{\mathfrak{X}}$, then, $\forall x^* \in \mathfrak{X}^*$, $\langle x^*, g(t) \rangle \in \mathfrak{F}^+$. Also, we have the standard proof of the fact that uniform limits on $0 \le t < \infty$ of sequences $(h_n(t))_1^{\infty} \subset \mathfrak{F}^+_{\mathfrak{X}}$ belong to the same class. We do now a simple observation, connected with Theorem 5 in [1]. We have precisely the

THEOREM 5. Let \mathfrak{X} be a Banach space; $T_t, t \geq 0 \rightarrow \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$, be a strongly continuous one-parameter semigroup, such that $||T_t|| \leq M$, $t \geq 0$. Let A be its infinitesimal generator and $u(t), t \geq 0 \rightarrow D(A)$, be a strong solution of the equation: $u'(t) = Au(t), t \geq 0$. Suppose that u(t) has relatively compact trajectory; then $u(t) \in \mathfrak{T}^+_{\mathfrak{X}}$.

PROOF. We have as usual, representation $u(t) = T_t u(0)$, $t \ge 0$. We prove that $u(t) \in \mathfrak{G}_{\mathfrak{X}}^{+}$. Consider the set of vector-functions: $\{u(t+\eta)\}_{\eta\ge 0} = \{T_{t+\eta}u(0)\}_{\eta\ge 0}$. By relative compactness we may find a sequence $(\eta_n)_1^{\infty} \subset [0, \infty)$ such that $(T_{\eta_n}u(0))_{n=1}^{\infty}$ is a Cauchy sequence in \mathfrak{X} . Then $\{u(t+\eta_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in $C[0, \infty; \mathfrak{X}]$. This follows from the obvious estimate:

$$||T_{t+\eta_n}u(0) - T_{t+\eta_m}u(0)|| \le ||T_t|| ||T_{\eta_n}u(0) - T_{\eta_m}u(0)|| \le M||u(\eta_n) - u(\eta_m)||.$$

We complement this result by another one, on weak- \mathfrak{T}_{x}^{+} solutions.

THEOREM 6. Let \mathfrak{X} be a Banach space; T_t , $t \geq 0 \rightarrow \mathfrak{L}(\mathfrak{X}, \mathfrak{X})$, be a strongly continuous one-parameter semigroup such that $||T_t|| \leq M$, $t \geq 0$. Let A be its infinitesimal generator; suppose that for a complex λ_0 , operator $(\lambda_0 - A)^{-1}$ is a linear compact operator in \mathfrak{X} ; suppose also the adjoint operator A^* be densely defined in \mathfrak{X}^* . Consider then u(t), $t \geq 0 \rightarrow D(A)$ a strong solution of u'(t) = Au(t), $t \geq 0$, such that $||u(t)|| \leq M$, $t \geq 0$. Then u(t) is weakly- $\mathfrak{F}_{\mathfrak{X}}^*$.

PROOF. We have again: $u(t) = T_t u(0)$, $t \ge 0$. Denote by v(t) the vector-function $(\lambda_0 - A)^{-1} u(t)$. Because T_t commutes with $(\lambda_0 - A)^{-1}$ we obtain $v(t) = T_t v(0)$, and moreover v(t) has relatively compact trajectory. We apply the previous theorem and get $v(t) \in \mathfrak{T}_{\mathfrak{X}}^+$. Hence $u(t) = (\lambda_0 - A)v(t)$. Take then $x^* \in D(A^*)$. We have $\langle x^*, u(t) \rangle = \langle x^*, (\lambda_0 - A)v(t) \rangle = \langle (\lambda_0 - A)^*x^*, v(t) \rangle = \langle y^*, v(t) \rangle$. Applying the previous remarks our result follows.

We end this paper giving, in a concrete case an effective criterium in order that for a given semigroup T_t , the trajectory $\{T_t x\}_{t\geq 0}$ be relatively compact (see Theorem 5). Consider the space $L^p(\mathbb{R}^p)$, $1\leq p<\infty$. Remember a necessary and sufficient condition for a set $\mathfrak{C}\subset L^p(\mathbb{R}^n)$ to be relatively compact:

(i)
$$\int_{\mathbb{R}^n} |u(x)|^p dx \leq M, \forall u \in \mathfrak{A},$$

- (ii) $\lim_{\rho\to\infty} \int_{\mathbb{R}^n} |u_{\rho}(x)|^p dx = 0$ uniformly on $u \in \mathfrak{A}$; here $u_{\rho}(x) = u(x)$, $|x| > \rho$ and $u_{\rho}(x) = 0$ for $|x| \le \rho$.
 - Call t_p ; $\phi \rightarrow \phi_p$, $L^p \rightarrow L^p$, the truncation operator,
- (iii) $\lim_{|h|\to 0} \int_{\mathbb{R}^n} |(\zeta_h u u)(x)|^p dx = 0$, uniformly on $u \in \mathfrak{C}$. Here $(\zeta_h u)(x) = u(x+h)$ is the translation operator. Then we have

THEOREM 7. Let T_t , $t \ge 0 \to \mathcal{L}(L^p(R^n), L^p(R^n))$, $1 \le p < \infty$, be a strongly continuous semigroup such that $||T_t|| \le M$, $t \ge 0$. Suppose that T_t commutes with the truncation operator t_p , for each $\rho > 0$ and with the translation operator ζ_h for each $h \in \mathbb{R}^n$. Then the set $\alpha = \{T_t \phi_0\}_{t \ge 0}$ is, for fixed $\phi_0 \in L^p(\mathbb{R}^n)$, a relatively compact set in $L^p(\mathbb{R}^n)$.

The proof is immediate if we apply the previous criterium.

REFERENCES

- 1. S. Zaidman, Théorèmes qualitatifs pour des équations aux dérivées partielles, Acad. R. P. Romîne Stud. Cerc. Mat. 6 (1955), 645-666. (Roumanian) MR 17, 1211.
- 2. ——, Uniqueness of bounded solutions for some abstract differential equations, Ann. Univ. Ferrara Sez. VII (to appear).
- 3. ——, Bounded solutions of some abstract differential equations, Proc. Amer. Math. Soc. 23 (1969), 340-342.
- 4. ——, On some almost-periodic functions, Ann. Univ. Ferrara Sez. VII (to appear).

University of Montreal, Montreal, Quebec, Canada