Divergence of interpolation polynomials in the complex domain
HTML articles powered by AMS MathViewer
- by P. J. O’Hara
- Proc. Amer. Math. Soc. 25 (1970), 690-697
- DOI: https://doi.org/10.1090/S0002-9939-1970-0273031-3
- PDF | Request permission
Abstract:
In 1918 L. Fejér gave an example of a function $f(z)$, analytic for $|z| < 1$ and continuous for $|z| \leqq 1$, such that the sequence of Lagrange polynomials found by interpolation to $f(z)$ at the roots of unity diverges at a point on the unit circle. More recently S. Ja. Al’per showed that, regardless of how the interpolation points are chosen on the unit circle, a function $g(z)$, analytic for $|z| < 1$ and continuous for $|z| \leqq 1$, exists such that the Lagrange polynomials do not converge uniformly to $g(z)$ for $|z| \leqq 1$. In the present paper we present some theory which sheds some light on the results of Fejér and Al’per. A new example of the divergence of Lagrange polynomials is also presented.References
- S. Ya. Al′per, On the convergence of Lagrange’s interpolational polynomials in the complex domain, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 5(71), 44–50 (Russian). MR 0083576 S. N. Bernšteĭn, Sur la limitation des valeurs d’un polynôme ${P_n}(x)$ de degré n sur tout un segment par ses valeurs en $(n + 1)$ points du segment, Bull. Acad. Sci. URSS 1931, no. 8, 1025-1050.
- Errett Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140–143. MR 133462, DOI 10.1090/S0002-9939-1962-0133462-4
- J. H. Curtiss, Riemann sums and the fundamental polynomials of Lagrange interpolation, Duke Math. J. 8 (1941), 525–532. MR 5190
- J. H. Curtiss, Interpolation with harmonic and complex polynomials to boundary values. , J. Math. Mech. 9 (1960), 167–192. MR 0114060, DOI 10.1512/iumj.1960.9.59010
- J. H. Curtiss, Polynomial interpolation in points equidistributed on the unit circle, Pacific J. Math. 12 (1962), 863–877. MR 163100
- J. H. Curtiss, Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points, Duke Math. J. 32 (1965), 187–204. MR 210902 L. Fejér, Interpolation und konforme Abildung, Göttingen Nachr. 1918, 319-331. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1938; 4th ed., Oxford Univ. Press, London, 1960. J. Marcinkiewicz, Quelques remarques sur l’interpolation, Acta Univ. Szeged 8 (1936/37), 127-130.
- I. P. Natanson, Konstruktivnaya teoriya funkciĭ, Gosudarstvennoe Izdatel′stvo Tehniko-Teoretičeskoĭ Literatury, Moscow-Leningrad, 1949 (Russian). MR 0034464 P. J. O’Hara, A study of interpolation by complex polynomials, Doctoral Dissertation, University of Miami, Coral Gables, Florida, 1968.
- Walter Rudin, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc. 7 (1956), 808–811. MR 81948, DOI 10.1090/S0002-9939-1956-0081948-0
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- Maynard Thompson, Complex polynomial interpolation to continuous boundary data, Proc. Amer. Math. Soc. 20 (1969), 327–332. MR 239100, DOI 10.1090/S0002-9939-1969-0239100-0
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1970 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 25 (1970), 690-697
- MSC: Primary 30.70
- DOI: https://doi.org/10.1090/S0002-9939-1970-0273031-3
- MathSciNet review: 0273031